Glass-ceramic technology /
"Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. This new edition examines the various types of glass-ceramic materials, the methods of their development, and their countless applications. With expanded sections on biomaterials and highly...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, N.J. :
Wiley : American Ceramic Society,
©2012.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Glass-Ceramic Technology
- CONTENTS
- INTRODUCTION TO THE SECOND EDITION
- INTRODUCTION TO THE FIRST EDITION
- HISTORY
- CHAPTER 1: PRINCIPLES OF DESIGNING GLASS-CERAMIC FORMATION
- 1.1 ADVANTAGES OF GLASS-CERAMIC FORMATION
- 1.1.1 Processing Properties
- 1.1.2 Thermal Properties
- 1.1.3 Optical Properties
- 1.1.4 Chemical Properties
- 1.1.5 Biological Properties
- 1.1.6 Mechanical Properties
- 1.1.7 Electrical and Magnetic Properties
- 1.2 FACTORS OF DESIGN
- 1.3 CRYSTAL STRUCTURES AND MINERAL PROPERTIES
- 1.3.1 Crystalline Silicates
- 1.3.1.1 Nesosilicates
- 1.3.1.2 Sorosilicates
- 1.3.1.3 Cyclosilicates
- 1.3.1.4 Inosilicates
- 1.3.1.5 Phyllosilicates
- 1.3.1.6 Tectosilicates
- 1.3.2 Phosphates
- 1.3.2.1 Apatite
- 1.3.2.2 Orthophosphates and Diphosphates
- 1.3.2.3 Metaphosphates
- 1.3.3 Oxides
- 1.3.3.1 TiO2
- 1.3.3.2 ZrO2
- 1.3.3.3 MgAl2O4 (Spinel)
- 1.4 NUCLEATION
- 1.4.1 Homogeneous Nucleation
- 1.4.2 Heterogeneous Nucleation
- 1.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation
- 1.4.4 Examples for Applying the Nucleation Theory in the Development of Glass-Ceramics
- 1.4.4.1 Volume Nucleation
- 1.4.4.2 Surface Nucleation
- 1.4.4.3 Time-Temperature-Transformation Diagrams
- 1.5 CRYSTAL GROWTH
- 1.5.1 Primary Growth
- 1.5.2 Anisotropic Growth
- 1.5.3 Surface Growth
- 1.5.4 Dendritic and Spherulitic Crystallization
- 1.5.4.1 Phenomenology
- 1.5.4.2 Dendritic and Spherulitic Crystallization Applications
- 1.5.5 Secondary Grain Growth
- CHAPTER 2: COMPOSITION SYSTEMS FOR GLASS-CERAMICS
- 2.1 ALKALINE AND ALKALINE EARTH SILICATES
- 2.1.1 SiO2-Li2O (Lithium Disilicate)
- 2.1.1.1 Stoichiometric Composition
- 2.1.1.2 Nonstoichiometric Multicomponent Compositions
- 2.1.2 SiO2-BaO (Sanbornite)
- 2.1.2.1 Stoichiometric Barium-Disilicate
- 2.1.2.2 Multicomponent Glass-Ceramics.
- 2.4.7 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F/Y2O3, B2O3 (Apatite and Leucite)
- 2.4.7.1 Fluoroapatite and Leucite
- 2.4.7.2 Oxyapatite and Leucite
- 2.4.8 SiO2-CaO-Na2O-P2O5-F (Rhenanite)
- 2.5 IRON SILICATES
- 2.5.1 SiO2-Fe2O3-CaO
- 2.5.2 SiO2-Al2O3-FeO-Fe2O3-K2O (Mica, Ferrite)
- 2.5.3 SiO2-Al2O3-Fe2O3-(R+)2O-(R2+)O (Basalt)
- 2.6 PHOSPHATES
- 2.6.1 P2O5-CaO (Metaphosphates)
- 2.6.2 P2O5-CaO-TiO2
- 2.6.3 P2O5-Na2O-BaO and P2O5-TiO2-WO3
- 2.6.3.1 P2O5-Na2O-BaO System
- 2.6.3.2 P2O5-TiO2-WO3 System
- 2.6.4 P2O5-Al2O3-CaO (Apatite)
- 2.6.5 P2O5-B2O3-SiO2
- 2.6.6 P2O5-SiO2-Li2O-ZrO2
- 2.6.6.1 Glass-Ceramics Containing 16 wt% ZrO2
- 2.6.6.2 Glass-Ceramics Containing 20 wt% ZrO2
- 2.7 OTHER SYSTEMS
- 2.7.1 Perovskite-Type Glass-Ceramics
- 2.7.1.1 SiO2-Nb2O5-Na2O-(BaO)
- 2.7.1.2 SiO2-Al2O3-TiO2-PbO
- 2.7.1.3 SiO2-Al2O3-K2O-Ta2O5-Nb2O5
- 2.7.2 Ilmenite-Type (SiO2-Al2O3-Li2O-Ta2O5) Glass-Ceramics
- 2.7.3 B2O3-BaFe12O19 (Barium Hexaferrite) or (BaFe10O15) Barium Ferrite
- 2.7.4 SiO2-Al2O3-BaO-TiO2 (Barium Titanate)
- 2.7.5 Bi2O3-SrO-CaO-CuO
- CHAPTER 3: MICROSTRUCTURE CONTROL
- 3.1 SOLID-STATE REACTIONS
- 3.1.1 Isochemical Phase Transformation
- 3.1.2 Reactions between Phases
- 3.1.3 Exsolution
- 3.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages
- 3.2 MICROSTRUCTURE DESIGN
- 3.2.1 Nanocrystalline Microstructures
- 3.2.2 Cellular Membrane Microstructures
- 3.2.3 Coast-and-Island Microstructure
- 3.2.4 Dendritic Microstructures
- 3.2.5 Relict Microstructures
- 3.2.6 House-of-Cards Microstructures
- 3.2.6.1 Nucleation Reactions
- 3.2.6.2 Primary Crystal Formation and Mica Precipitation
- 3.2.7 Cabbage-Head Microstructures
- 3.2.8 Acicular Interlocking Microstructures
- 3.2.9 Lamellar Twinned Microstructures
- 3.2.10 Preferred Crystal Orientation
- 3.2.11 Crystal Network Microstructures.
- 4.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization
- 4.3.4.2 Laser-Induced Crystallization for Optical Gratings and Waveguides
- 4.3.4.3 Glass-Ceramic Ferrule for Optical Connectors
- 4.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility
- 4.4 MEDICAL AND DENTAL GLASS-CERAMICS
- 4.4.1 Glass-Ceramics for Medical Applications
- 4.4.1.1 CERABONE®
- 4.4.1.2 CERAVITAL®
- 4.4.1.3 BIOVERIT®
- 4.4.2 Glass-Ceramics for Dental Restoration
- 4.4.2.1 Moldable Glass-Ceramics for Metal-Free Restorations
- 4.4.2.2 Machinable Glass-Ceramics for Metal-Free Restorations
- 4.4.2.3 Glass-Ceramics on Metal Frameworks
- 4.4.2.4 Glass-Ceramic Veneering Materials on High Toughness Polycrystalline Ceramics
- 4.5 ELECTRICAL AND ELECTRONIC APPLICATIONS
- 4.5.1 Insulators
- 4.5.2 Electronic Packaging
- 4.5.2.1 Requirements for Their Development
- 4.5.2.2 Properties and Processing
- 4.5.2.3 Applications
- 4.6 ARCHITECTURAL APPLICATIONS
- 4.7 COATINGS AND SOLDERS
- 4.8 GLASS-CERAMICS FOR ENERGY APPLICATIONS
- 4.8.1 Components for Lithium Batteries
- 4.8.1.1 Cathodes
- 4.8.1.2 Electrolytes
- 4.8.2 Joining Materials for Solid Oxide Fuel Cell Components
- EPILOGUE: FUTURE DIRECTIONS
- APPENDIX: TWENTY-ONE FIGURES OF 23 CRYSTAL STRUCTURES
- REFERENCES
- INDEX.