Cargando…

Glass-ceramic technology /

"Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. This new edition examines the various types of glass-ceramic materials, the methods of their development, and their countless applications. With expanded sections on biomaterials and highly...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Höland, Wolfram
Autor Corporativo: American Ceramic Society
Otros Autores: Beall, G. H.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley : American Ceramic Society, ©2012.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Glass-Ceramic Technology
  • CONTENTS
  • INTRODUCTION TO THE SECOND EDITION
  • INTRODUCTION TO THE FIRST EDITION
  • HISTORY
  • CHAPTER 1: PRINCIPLES OF DESIGNING GLASS-CERAMIC FORMATION
  • 1.1 ADVANTAGES OF GLASS-CERAMIC FORMATION
  • 1.1.1 Processing Properties
  • 1.1.2 Thermal Properties
  • 1.1.3 Optical Properties
  • 1.1.4 Chemical Properties
  • 1.1.5 Biological Properties
  • 1.1.6 Mechanical Properties
  • 1.1.7 Electrical and Magnetic Properties
  • 1.2 FACTORS OF DESIGN
  • 1.3 CRYSTAL STRUCTURES AND MINERAL PROPERTIES
  • 1.3.1 Crystalline Silicates
  • 1.3.1.1 Nesosilicates
  • 1.3.1.2 Sorosilicates
  • 1.3.1.3 Cyclosilicates
  • 1.3.1.4 Inosilicates
  • 1.3.1.5 Phyllosilicates
  • 1.3.1.6 Tectosilicates
  • 1.3.2 Phosphates
  • 1.3.2.1 Apatite
  • 1.3.2.2 Orthophosphates and Diphosphates
  • 1.3.2.3 Metaphosphates
  • 1.3.3 Oxides
  • 1.3.3.1 TiO2
  • 1.3.3.2 ZrO2
  • 1.3.3.3 MgAl2O4 (Spinel)
  • 1.4 NUCLEATION
  • 1.4.1 Homogeneous Nucleation
  • 1.4.2 Heterogeneous Nucleation
  • 1.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation
  • 1.4.4 Examples for Applying the Nucleation Theory in the Development of Glass-Ceramics
  • 1.4.4.1 Volume Nucleation
  • 1.4.4.2 Surface Nucleation
  • 1.4.4.3 Time-Temperature-Transformation Diagrams
  • 1.5 CRYSTAL GROWTH
  • 1.5.1 Primary Growth
  • 1.5.2 Anisotropic Growth
  • 1.5.3 Surface Growth
  • 1.5.4 Dendritic and Spherulitic Crystallization
  • 1.5.4.1 Phenomenology
  • 1.5.4.2 Dendritic and Spherulitic Crystallization Applications
  • 1.5.5 Secondary Grain Growth
  • CHAPTER 2: COMPOSITION SYSTEMS FOR GLASS-CERAMICS
  • 2.1 ALKALINE AND ALKALINE EARTH SILICATES
  • 2.1.1 SiO2-Li2O (Lithium Disilicate)
  • 2.1.1.1 Stoichiometric Composition
  • 2.1.1.2 Nonstoichiometric Multicomponent Compositions
  • 2.1.2 SiO2-BaO (Sanbornite)
  • 2.1.2.1 Stoichiometric Barium-Disilicate
  • 2.1.2.2 Multicomponent Glass-Ceramics.
  • 2.4.7 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F/Y2O3, B2O3 (Apatite and Leucite)
  • 2.4.7.1 Fluoroapatite and Leucite
  • 2.4.7.2 Oxyapatite and Leucite
  • 2.4.8 SiO2-CaO-Na2O-P2O5-F (Rhenanite)
  • 2.5 IRON SILICATES
  • 2.5.1 SiO2-Fe2O3-CaO
  • 2.5.2 SiO2-Al2O3-FeO-Fe2O3-K2O (Mica, Ferrite)
  • 2.5.3 SiO2-Al2O3-Fe2O3-(R+)2O-(R2+)O (Basalt)
  • 2.6 PHOSPHATES
  • 2.6.1 P2O5-CaO (Metaphosphates)
  • 2.6.2 P2O5-CaO-TiO2
  • 2.6.3 P2O5-Na2O-BaO and P2O5-TiO2-WO3
  • 2.6.3.1 P2O5-Na2O-BaO System
  • 2.6.3.2 P2O5-TiO2-WO3 System
  • 2.6.4 P2O5-Al2O3-CaO (Apatite)
  • 2.6.5 P2O5-B2O3-SiO2
  • 2.6.6 P2O5-SiO2-Li2O-ZrO2
  • 2.6.6.1 Glass-Ceramics Containing 16 wt% ZrO2
  • 2.6.6.2 Glass-Ceramics Containing 20 wt% ZrO2
  • 2.7 OTHER SYSTEMS
  • 2.7.1 Perovskite-Type Glass-Ceramics
  • 2.7.1.1 SiO2-Nb2O5-Na2O-(BaO)
  • 2.7.1.2 SiO2-Al2O3-TiO2-PbO
  • 2.7.1.3 SiO2-Al2O3-K2O-Ta2O5-Nb2O5
  • 2.7.2 Ilmenite-Type (SiO2-Al2O3-Li2O-Ta2O5) Glass-Ceramics
  • 2.7.3 B2O3-BaFe12O19 (Barium Hexaferrite) or (BaFe10O15) Barium Ferrite
  • 2.7.4 SiO2-Al2O3-BaO-TiO2 (Barium Titanate)
  • 2.7.5 Bi2O3-SrO-CaO-CuO
  • CHAPTER 3: MICROSTRUCTURE CONTROL
  • 3.1 SOLID-STATE REACTIONS
  • 3.1.1 Isochemical Phase Transformation
  • 3.1.2 Reactions between Phases
  • 3.1.3 Exsolution
  • 3.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages
  • 3.2 MICROSTRUCTURE DESIGN
  • 3.2.1 Nanocrystalline Microstructures
  • 3.2.2 Cellular Membrane Microstructures
  • 3.2.3 Coast-and-Island Microstructure
  • 3.2.4 Dendritic Microstructures
  • 3.2.5 Relict Microstructures
  • 3.2.6 House-of-Cards Microstructures
  • 3.2.6.1 Nucleation Reactions
  • 3.2.6.2 Primary Crystal Formation and Mica Precipitation
  • 3.2.7 Cabbage-Head Microstructures
  • 3.2.8 Acicular Interlocking Microstructures
  • 3.2.9 Lamellar Twinned Microstructures
  • 3.2.10 Preferred Crystal Orientation
  • 3.2.11 Crystal Network Microstructures.
  • 4.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization
  • 4.3.4.2 Laser-Induced Crystallization for Optical Gratings and Waveguides
  • 4.3.4.3 Glass-Ceramic Ferrule for Optical Connectors
  • 4.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility
  • 4.4 MEDICAL AND DENTAL GLASS-CERAMICS
  • 4.4.1 Glass-Ceramics for Medical Applications
  • 4.4.1.1 CERABONE®
  • 4.4.1.2 CERAVITAL®
  • 4.4.1.3 BIOVERIT®
  • 4.4.2 Glass-Ceramics for Dental Restoration
  • 4.4.2.1 Moldable Glass-Ceramics for Metal-Free Restorations
  • 4.4.2.2 Machinable Glass-Ceramics for Metal-Free Restorations
  • 4.4.2.3 Glass-Ceramics on Metal Frameworks
  • 4.4.2.4 Glass-Ceramic Veneering Materials on High Toughness Polycrystalline Ceramics
  • 4.5 ELECTRICAL AND ELECTRONIC APPLICATIONS
  • 4.5.1 Insulators
  • 4.5.2 Electronic Packaging
  • 4.5.2.1 Requirements for Their Development
  • 4.5.2.2 Properties and Processing
  • 4.5.2.3 Applications
  • 4.6 ARCHITECTURAL APPLICATIONS
  • 4.7 COATINGS AND SOLDERS
  • 4.8 GLASS-CERAMICS FOR ENERGY APPLICATIONS
  • 4.8.1 Components for Lithium Batteries
  • 4.8.1.1 Cathodes
  • 4.8.1.2 Electrolytes
  • 4.8.2 Joining Materials for Solid Oxide Fuel Cell Components
  • EPILOGUE: FUTURE DIRECTIONS
  • APPENDIX: TWENTY-ONE FIGURES OF 23 CRYSTAL STRUCTURES
  • REFERENCES
  • INDEX.