Cargando…

Ensemble methods : foundations and algorithms.

An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zhou, Zhi-Hua (Computer scientist)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : CRC Press, 2012.
Colección:Chapman & Hall/CRC Machine Learning & Pattern Recognition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn798535723
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 120709s2012 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d CUS  |d OCLCQ  |d DEBSZ  |d IUL  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCF  |d CRCPR  |d OCLCQ  |d CSAIL  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781439830055 
020 |a 1439830053 
029 1 |a DEBSZ  |b 379328348 
029 1 |a DEBSZ  |b 397336276 
035 |a (OCoLC)798535723 
050 4 |a QA278.4 .Z47 2012 
082 0 4 |a 006.3/1  |a 006.31 
084 |a BUS061000  |a COM021030  |a COM037000  |2 bisacsh 
049 |a UAMI 
100 1 |a Zhou, Zhi-Hua  |c (Computer scientist)  |1 https://id.oclc.org/worldcat/entity/E39PBJhMhyc4CcPwT9vQ4b4THC 
245 1 0 |a Ensemble methods :  |b foundations and algorithms. 
260 |a Hoboken :  |b CRC Press,  |c 2012. 
300 |a 1 online resource (234 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC Machine Learning & Pattern Recognition 
588 0 |a Print version record. 
505 0 |a Front Cover; Preface; Notations; Contents; 1. Introduction; 2. Boosting; 3. Bagging; 4. Combination Methods; 5. Diversity; 6. Ensemble Pruning; 7. Clustering Ensembles; 8. Advanced Topics; References. 
520 |a An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity a. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical analysis. 
650 0 |a Multiple comparisons (Statistics) 
650 0 |a Set theory. 
650 6 |a Analyse mathématique. 
650 6 |a Corrélation multiple (Statistique) 
650 6 |a Théorie des ensembles. 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Multiple comparisons (Statistics)  |2 fast 
650 7 |a Set theory  |2 fast 
758 |i has work:  |a Ensemble methods (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH9q6m6mQ7P7F6M7DBFbBd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Zhou, Zhi-Hua.  |t Ensemble Methods : Foundations and Algorithms.  |d Hoboken : CRC Press, ©2012  |z 9781439830031 
830 0 |a Chapman & Hall/CRC Machine Learning & Pattern Recognition. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=952003  |z Texto completo 
938 |a CRC Press  |b CRCP  |n CAH0KE11360PDF 
938 |a EBL - Ebook Library  |b EBLB  |n EBL952003 
938 |a YBP Library Services  |b YANK  |n 7297165 
994 |a 92  |b IZTAP