|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn797919775 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
121122s2012 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d CDX
|d OCLCO
|d DEBSZ
|d OL$
|d OCLCO
|d OCLCQ
|d OCLCF
|d YDXCP
|d N$T
|d E7B
|d CAMBR
|d OCLCQ
|d BUF
|d UAB
|d UUM
|d OCLCQ
|d COCUF
|d STF
|d LOA
|d CUY
|d MERUC
|d ZCU
|d ICG
|d INT
|d K6U
|d VT2
|d U3W
|d OCLCQ
|d WYU
|d LVT
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d G3B
|d OCLCQ
|d UKAHL
|d AJS
|d OCLCO
|d OCLCQ
|d S9M
|d OCLCL
|
019 |
|
|
|a 798613266
|a 801405260
|a 817925361
|a 853659692
|
020 |
|
|
|a 9781139377355
|
020 |
|
|
|a 1139377353
|
020 |
|
|
|a 9781139084659
|q (electronic book)
|
020 |
|
|
|a 1139084658
|q (electronic book)
|
020 |
|
|
|a 9781139380218
|q (electronic bk.)
|
020 |
|
|
|a 1139380214
|q (electronic bk.)
|
020 |
|
|
|a 9781139375924
|
020 |
|
|
|a 113937592X
|
020 |
|
|
|z 9781107017771
|
020 |
|
|
|z 1107017777
|
029 |
1 |
|
|a AU@
|b 000052908621
|
029 |
1 |
|
|a AU@
|b 000069471144
|
029 |
1 |
|
|a DEBSZ
|b 372602401
|
029 |
1 |
|
|a DEBSZ
|b 379326868
|
029 |
1 |
|
|a NLGGC
|b 344425754
|
035 |
|
|
|a (OCoLC)797919775
|z (OCoLC)798613266
|z (OCoLC)801405260
|z (OCoLC)817925361
|z (OCoLC)853659692
|
050 |
|
4 |
|a QA221 .N68 2012
|
072 |
|
7 |
|a MAT
|x 029040
|2 bisacsh
|
082 |
0 |
4 |
|a 519.2/3
|a 519.23
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Nourdin, Ivan.
|
245 |
1 |
0 |
|a Normal Approximations with Malliavin Calculus :
|b From Stein's Method to Universality.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (256 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge Tracts in Mathematics, 192 ;
|v v. 192
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; CAMBRIDGE TRACTS IN MATHEMATICS: GENERAL EDITORS; Title; Copyright; Dedication; Contents; Preface; Introduction; 1 Malliavin operators in the one-dimensional case; 1.1 Derivative operators; 1.2 Divergences; 1.3 Ornstein-Uhlenbeck operators; 1.4 First application: Hermite polynomials; 1.5 Second application: variance expansions; 1.6 Third application: second-order Poincaré inequalities; 1.7 Exercises; 1.8 Bibliographic comments; 2 Malliavin operators and isonormal Gaussian processes; 2.1 Isonormal Gaussian processes; 2.2 Wiener chaos; 2.3 The derivative operator.
|
505 |
8 |
|
|a 2.4 The Malliavin derivatives in Hilbert spaces2.5 The divergence operator; 2.6 Some Hilbert space valued divergences; 2.7 Multiple integrals; 2.8 The Ornstein-Uhlenbeck semigroup; 2.9 An integration by parts formula; 2.10 Absolute continuity of the laws of multiple integrals; 2.11 Exercises; 2.12 Bibliographic comments; 3 Stein's method for one-dimensional normal approximations; 3.1 Gaussian moments and Stein's lemma; 3.2 Stein's equations; 3.3 Stein's bounds for the total variation distance; 3.4 Stein's bounds for the Kolmogorov distance; 3.5 Stein's bounds for the Wasserstein distance.
|
505 |
8 |
|
|a 3.6 A simple example3.7 The Berry-Esseen theorem; 3.8 Exercises; 3.9 Bibliographic comments; 4 Multidimensional Stein's method; 4.1 Multidimensional Stein's lemmas; 4.2 Stein's equations for identity matrices; 4.3 Stein's equations for general positive definite matrices; 4.4 Bounds on the Wasserstein distance; 4.5 Exercises; 4.6 Bibliographic comments; 5 Stein meets Malliavin: univariate normal approximations; 5.1 Bounds for general functionals; 5.2 Normal approximations on Wiener chaos; 5.2.1 Some preliminary considerations; 5.3 Normal approximations in the general case; 5.3.1 Main results.
|
505 |
8 |
|
|a 5.4 Exercises5.5 Bibliographic comments; 6 Multivariate normal approximations; 6.1 Bounds for general vectors; 6.2 The case of Wiener chaos; 6.3 CLTs via chaos decompositions; 6.4 Exercises; 6.5 Bibliographic comments; 7 Exploring the Breuer-Major theorem; 7.1 Motivation; 7.2 A general statement; 7.3 Quadratic case; 7.4 The increments of a fractional Brownian motion; 7.5 Exercises; 7.6 Bibliographic comments; 8 Computation of cumulants; 8.1 Decomposing multi-indices; 8.2 General formulae; 8.3 Application to multiple integrals; 8.4 Formulae in dimension one; 8.5 Exercises.
|
505 |
8 |
|
|a 8.6 Bibliographic comments9 Exact asymptotics and optimal rates; 9.1 Some technical computations; 9.2 A general result; 9.3 Connections with Edgeworth expansions; 9.4 Double integrals; 9.5 Further examples; 9.6 Exercises; 9.7 Bibliographic comments; 10 Density estimates; 10.1 General results; 10.2 Explicit computations; 10.3 An example; 10.4 Exercises; 10.5 Bibliographic comments; 11 Homogeneous sums and universality; 11.1 The Lindeberg method; 11.2 Homogeneous sums and influence functions; 11.3 The universality result; 11.4 Some technical estimates; 11.5 Proof of Theorem 11.3.1.
|
500 |
|
|
|a 11.6 Exercises.
|
520 |
|
|
|a Shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Approximation theory.
|
650 |
|
0 |
|a Malliavin calculus.
|
650 |
|
6 |
|a Théorie de l'approximation.
|
650 |
|
6 |
|a Calcul de Malliavin.
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x Stochastic Processes.
|2 bisacsh
|
650 |
0 |
7 |
|a Aproximación, Teoría de
|2 embucm
|
650 |
|
7 |
|a Approximation theory
|2 fast
|
650 |
|
7 |
|a Malliavin calculus
|2 fast
|
700 |
1 |
|
|a Peccati, Giovanni,
|d 1975-
|1 https://id.oclc.org/worldcat/entity/E39PCjHW3xR6VdxggCgh4BRBT3
|
758 |
|
|
|i has work:
|a Normal approximations with Malliavin calculus (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG3RkMDtRqjXjvR8WFHq6X
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Nourdin, Ivan.
|t Normal Approximations with Malliavin Calculus : From Stein's Method to Universality.
|d Cambridge : Cambridge University Press, ©2012
|z 9781107017771
|
830 |
|
0 |
|a Cambridge Tracts in Mathematics, 192.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=880643
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH22951523
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28321248
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 22835449
|c 50.00 GBP
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL880643
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10574349
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 443707
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 8923704
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 8465721
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9003533
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9445067
|
994 |
|
|
|a 92
|b IZTAP
|