Cargando…

Fundamentals and Applications of Nanomaterials.

Supported by over 90 illustrations, this timely resource offers you a broad introduction to nanomaterials, covering basic principles, technology, and cutting-edge applications. From quantum mechanics, band structure, surface chemistry, thermodynamics, and kinetics of nanomaterials, to nanomaterial c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Guo, Zhen
Otros Autores: Tan, Li
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood : Artech House, 2009.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Fundamentals and Applicationsof Nanomaterials; Contents; Foreword; Preface; Part I Fundamentals of Nanomaterials Science; 1 Quantum Mechanics and Atomic Structures; 1.1 Brief History of Quantum Mechanics; 1.2 Photoelectric Effect and Duality Nature of Light; 1.2.1 Photoelectric Effect; 1.2.2 Einstein's Explanation; 1.2.3 Duality of Light; 1.3 Duality of Electrons; 1.3.1 De Broglie's Hypothesis and Electrons as Waves; 1.3.2 Time Independent Schrodinger Equation; 1.3.3 Free Electrons; 1.4 Electrons in Potential Well; 1.4.1 1D Infinite Potential Well; 1.4.2 3D Infinite Potential Well.
  • 1.5 Atomic Structure and the Periodic Table1.5.1 The Hydrogen Atom; 1.5.2 The Helium Atom; 1.5.3 The Periodic Table; 2 Bonding and Band Structure; 2.1 Classic Atomic Bonding; 2.2 Atomic Bonding in Molecules: LCAO Theory; 2.2.1 Two-Atom Molecule; 2.2.2 Three-Atom Molecule; 2.2.3 Four-Atom Molecule; 2.2.4 Six-Atom Molecule (Benzene Ring); 2.2.5 Many-Atom Molecule; 2.3 Atomic Bonding in Crystalline Solids: Band Theory; 2.3.1 Energy Band in Solids; 2.3.2 Partially Filled Energy Band for Metals; 2.3.3 Energy Band for Insulators and Semiconductors.
  • 2.4 Bonding and Band Structures in Nanocrystal Materials2.4.1 Top-Down Method for Quantum Wells and Dots; 2.4.2 Bottom-Up Method for Carbon-Based Nanocrystals; References; 3 Surface Science for Nanomaterials; 3.1 Crystal Structure and Crystallography; 3.1.1 Crystal Structures; 3.1.2 Crystallography; 3.1.3 Close-Packed Directions, Planes, and Structures; 3.2 Surface Crystallography; 3.2.1 Surface Structure for Close-Packed Structures; 3.2.2 Surface Structure for BCC Structures; 3.2.3 Surface Symmetry; 3.3 Surface Energy; 3.3.1 Crystallographically Preferred Surface.
  • 3.3.2 Wulff Constructions and Equilibrium Shape for Nanoparticles3.4 Surface Reconfigurations; 3.4.1 Surface Relaxation and Reconstructions; 3.4.2 Adsorption; 3.5 Surface Area and Surface Thermodynamics; 3.5.1 Surface Area in Nanomaterials; 3.5.2 Nanoparticle Nucleation; 3.5.3 Wetting; References; 4 Nanomaterials Characterization; 4.1 X-Ray Diffraction for Nanomaterials Characterization; 4.1.1 X-Ray Diffraction and the Laue Method; 4.1.2 Bragg's Law; 4.1.3 X-Ray Diffraction in Nanomaterials; 4.2 Electron Microscopy for Nanomaterials Characterization.
  • 4.2.1 Interaction Between Electron Beams and Solids4.2.2 Transmission Electron Microscope (TEM); 4.2.3 Scanning Electron Microscope (SEM); 4.2.4 Scanning Probe Microscope (SPM); 4.3 Surface Analysis Methods; 4.3.1 Auger Electron Spectroscope (AES); 4.3.2 X-Ray Photoelectron Spectroscope (XPS); 4.3.3 Secondary Ion Mass Spectroscope (SIMS); References; Part II Nanomaterials Fabrication; 5 Thin-Film Deposition: Top-DownApproach; 5.1 Thin-Film Deposition Mechanisms; 5.1.1 Homogeneous Film Growth Mechanisms; 5.1.2 Heterogeneous Film Growth Mechanisms; 5.2 Thin-Film Deposition Methods.