|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn795912948 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
120620s2012 njua ob 001 0 eng d |
010 |
|
|
|z 2011047244
|
040 |
|
|
|a DG1
|b eng
|e rda
|e pn
|c DG1
|d YDXCP
|d OCLCO
|d EBLCP
|d OCLCQ
|d MYG
|d E7B
|d CDX
|d N$T
|d IDEBK
|d OCLCQ
|d OCLCA
|d OCLCQ
|d DEBSZ
|d RECBK
|d OCLCF
|d DEBBG
|d OCLCQ
|d COO
|d AZK
|d DG1
|d COCUF
|d DG1
|d MOR
|d LIP
|d PIFAG
|d ZCU
|d OCLCQ
|d MERUC
|d OCLCQ
|d NJR
|d U3W
|d OCLCQ
|d OCL
|d OCLCQ
|d STF
|d WRM
|d NRAMU
|d ICG
|d INT
|d VT2
|d AU@
|d MERER
|d CUY
|d OCLCQ
|d WYU
|d UWO
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d UKCRE
|d UKMGB
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCO
|d OCLCL
|d OCLCQ
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBC077810
|2 bnb
|
016 |
7 |
|
|a 019817649
|2 Uk
|
019 |
|
|
|a 823249420
|a 824081598
|a 864909846
|a 961516334
|a 962633818
|a 988469547
|a 991919831
|a 1037707062
|a 1038691251
|a 1045489680
|a 1055368927
|a 1065942182
|a 1071789719
|a 1081222735
|a 1153524229
|a 1228621199
|a 1357618075
|
020 |
|
|
|a 9781118310243
|q (electronic bk.)
|
020 |
|
|
|a 1118310241
|q (electronic bk.)
|
020 |
|
|
|a 9781118310199
|q (electronic bk.)
|
020 |
|
|
|a 1118310195
|q (electronic bk.)
|
020 |
|
|
|a 9781118310236
|q (electronic bk.)
|
020 |
|
|
|a 1118310233
|q (electronic bk.)
|
020 |
|
|
|z 9781118007440
|
020 |
|
|
|z 1118007441
|
020 |
|
|
|z 9781283941228
|q (MyiLibrary)
|
020 |
|
|
|z 1283941228
|q (MyiLibrary)
|
028 |
0 |
1 |
|a EB00063322
|b Recorded Books
|
029 |
1 |
|
|a AU@
|b 000049595518
|
029 |
1 |
|
|a CHBIS
|b 010879297
|
029 |
1 |
|
|a CHNEW
|b 000939974
|
029 |
1 |
|
|a CHVBK
|b 480202672
|
029 |
1 |
|
|a DEBBG
|b BV040884821
|
029 |
1 |
|
|a DEBBG
|b BV041828952
|
029 |
1 |
|
|a DEBBG
|b BV041905767
|
029 |
1 |
|
|a DEBBG
|b BV044162065
|
029 |
1 |
|
|a DEBSZ
|b 423054279
|
029 |
1 |
|
|a DEBSZ
|b 431089906
|
029 |
1 |
|
|a DEBSZ
|b 485021145
|
029 |
1 |
|
|a NZ1
|b 14686934
|
029 |
1 |
|
|a NZ1
|b 15351054
|
029 |
1 |
|
|a UKMGB
|b 019817649
|
035 |
|
|
|a (OCoLC)795912948
|z (OCoLC)823249420
|z (OCoLC)824081598
|z (OCoLC)864909846
|z (OCoLC)961516334
|z (OCoLC)962633818
|z (OCoLC)988469547
|z (OCoLC)991919831
|z (OCoLC)1037707062
|z (OCoLC)1038691251
|z (OCoLC)1045489680
|z (OCoLC)1055368927
|z (OCoLC)1065942182
|z (OCoLC)1071789719
|z (OCoLC)1081222735
|z (OCoLC)1153524229
|z (OCoLC)1228621199
|z (OCoLC)1357618075
|
037 |
|
|
|a 10.1002/9781118310243
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
050 |
|
4 |
|a TA418.9.N35
|b W365 2012eb
|
072 |
|
7 |
|a TEC
|x 021000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/1596
|2 23
|
084 |
|
|
|a TEC027000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Wang, Xinwei,
|d 1948-
|1 https://id.oclc.org/worldcat/entity/E39PBJkXpFyWGWP3tW9x6xkJjC
|
245 |
1 |
0 |
|a Experimental micro/nanoscale thermal transport /
|c Xinwei Wang.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b Wiley,
|c 2012.
|
300 |
|
|
|a 1 online resource (xiii, 264 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|6 880-01
|a Frontmatter -- Introduction -- Thermal Characterization in Frequency Domain -- Transient Technologies in the Time Domain -- Steady-State Thermal Characterization -- Steady-State Optical-Based Thermal Probing and Characterization -- Index.
|
520 |
|
|
|a "This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transient electro-thermal technique, transient photo-electro-thermal technique, pulsed laser-assisted thermal relaxation technique, and steady-state electro-Raman-thermal technique. These techniques feature significantly improved ease of implementation, super signal-to-noise ratio, and have the capacity of measuring the thermal conductivity/diffusivity of various one-dimensional structures from dielectric, semiconductive, to metallic materials"--
|c Provided by publisher.
|
520 |
|
|
|a "This is the first book to focus on thermal characterization of the thermophysical properties of micro/nanoscale materials"--
|c Provided by publisher.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Nanostructured materials
|x Thermal properties.
|
650 |
|
0 |
|a Heat
|x Transmission.
|
650 |
|
6 |
|a Nanomatériaux
|x Propriétés thermiques.
|
650 |
|
6 |
|a Chaleur
|x Transmission.
|
650 |
|
7 |
|a heat transmission.
|2 aat
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Nanotechnology & MEMS.
|2 bisacsh
|
650 |
|
7 |
|a Heat
|x Transmission
|2 fast
|
758 |
|
|
|i has work:
|a Experimental micro/nanoscale thermal transport (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGQgR67FDTQ4yC9bkKv6Xd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Wang, Xinwei, 1948-
|t Experimental micro/nanoscale thermal transport.
|d Hoboken, New Jersey : Wiley, 2012
|z 9781118007440
|w (DLC) 2011047244
|w (OCoLC)754727784
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=848528
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t Introduction --
|g 1.1.
|t Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials --
|g 1.1.1.
|t Thermal Transport Constrained by Material Size --
|g 1.1.2.
|t Thermal Transport Constrained by Time --
|g 1.1.3.
|t Thermal Transport Constrained by the Size of Physical Process --
|g 1.2.
|t Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales --
|g 1.2.1.
|t Equilibrium MD Prediction of Thermal Conductivity --
|g 1.2.2.
|t Nonequilibrium MD Study of Thermal Transport --
|g 1.2.3.
|t MD Study of Thermal Transport Constrained by Time --
|g 1.3.
|t Boltzmann Transportation Equation for Thermal Transport Study --
|g 1.4.
|t Direct Energy Carrier Relaxation Tracking (DECRT) --
|g 1.5.
|t Challenges in Characterizing Thermal Transport at Micro/Nanoscales --
|t References --
|g 2.
|t Thermal Characterization In Frequency Domain --
|g 2.1.
|t Frequency Domain Photoacoustic (PA) Technique --
|g 2.1.1.
|t Physical Model --
|g 2.1.2.
|t Experimental Details --
|g 2.1.3.
|t PA Measurement of Films and Bulk Materials --
|g 2.1.4.
|t Uncertainty of the PA Measurement --
|g 2.2.
|t Frequency Domain Photothermal Radiation (PTR) Technique --
|g 2.2.1.
|t Experimental Details of the PTR Technique --
|g 2.2.2.
|t PTR Measurement of Micrometer-Thick Films --
|g 2.2.3.
|t PTR with Internal Heating of Desired Locations --
|g 2.3.
|t Three-Omega Technique --
|g 2.3.1.
|t Physical Model of the 3ω Technique for One-Dimensional Structures --
|g 2.3.2.
|t Experimental Details --
|g 2.3.3.
|t Calibration of the Experiment --
|g 2.3.4.
|t Measurement of Micrometer-Thick Wires --
|g 2.3.5.
|t Effect of Radiation on Measurement Result --
|g 2.4.
|t Optical Heating Electrical Thermal Sensing (OHETS) Technique --
|g 2.4.1.
|t Experimental Principle and Physical Model --
|g 2.4.2.
|t Effect of Nonuniform Distribution of Laser Beam --
|g 2.4.3.
|t Experimental Details and Calibration --
|g 2.4.4.
|t Measurement of Electrically Conductive Wires --
|g 2.4.5.
|t Measurement of Nonconductive Wires --
|g 2.4.6.
|t Effect of Au Coating on Measurement --
|g 2.4.7.
|t Temperature Rise in the OHETS Experiment --
|g 2.5.
|t Comparison Among the Techniques --
|t References --
|g 3.
|t Transient Technologies In The Time Domain --
|g 3.1.
|t Transient Photo-Electro-Thermal (TPET) Technique --
|g 3.1.1.
|t Experimental Principles --
|g 3.1.2.
|t Physical Model Development --
|g 3.1.3.
|t Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam --
|g 3.1.4.
|t Experimental Setup --
|g 3.1.5.
|t Technique Validation --
|g 3.1.6.
|t Thermal Characterization of SWCNT Bundles and Cloth Fibers --
|g 3.2.
|t Transient Electrothermal (TET) Technique --
|g 3.2.1.
|t Physical Principles of the TET Technique --
|g 3.2.2.
|t Methods for Data Analysis to Determine the Thermal Diffusivity --
|g 3.2.3.
|t Effect of Nonconstant Electrical Heating --
|g 3.2.4.
|t Experimental Details --
|g 3.2.5.
|t Technique Validation --
|g 3.2.6.
|t Measurement of SWCNT Bundles --
|g 3.2.7.
|t Measurement of Polyester Fibers --
|g 3.2.8.
|t Measurement of Micro/Submicroscale Polyacrylonitrile Wires --
|g 3.3.
|t Pulsed Laser-Assisted Thermal Relaxation Technique --
|g 3.3.1.
|t Experimental Principles --
|g 3.3.2.
|t Physical Model for the PLTR Technique --
|g 3.3.3.
|t Methods to Determine the Thermal Diffusivity --
|g 3.3.4.
|t Experimental Setup and Technique Validation --
|g 3.3.5.
|t Measurement of Multiwalled Carbon Nanotube (MWCNT) Bundles --
|g 3.3.6.
|t Measurement of Individual Microscale Carbon Fibers --
|g 3.4.
|t Super Channeling Effect for Thermal Transport in Micro/Nanoscale Wires --
|g 3.5.
|t Multidimensional Thermal Characterization --
|g 3.5.1.
|t Sample Preparation --
|g 3.5.2.
|t Thermal Characterization Design --
|g 3.5.3.
|t Thermal Transport Along the Axial Direction of Amorphous TiO2 Nanotubes --
|g 3.5.4.
|t Thermal Transport in the Cross-Tube Direction of Amorphous TiO2 Nanotubes --
|g 3.5.5.
|t Evaluation of Thermal Contact Resistance Between Amorphous TiO2 Nanotubes --
|g 3.5.6.
|t Anisotropic Thermal Transport in Anatase TiO2 Nanotubes --
|g 3.6.
|t Remarks on the Transient Technologies --
|t References --
|g 4.
|t Steady-State Thermal Characterization --
|g 4.1.
|t Generalized Electrothermal Characterization --
|g 4.1.1.
|t Generalized Electrothermal (GET) Technique: Combined Transient and Steady States --
|g 4.1.2.
|t Experimental Setup --
|g 4.1.3.
|t Experimental Details --
|g 4.1.4.
|t Measurement of MWCNT Bundle with L = 3.33 mm and D = 94.5 μm --
|g 4.1.5.
|t Measurement of MWCNT Bundle with L = 2.90 mm and D = 233 μm --
|g 4.1.6.
|t Analysis of the Tube-to-Tube Thermal Contact Resistance --
|g 4.1.7.
|t Effect of Radiation Heat Loss --
|g 4.2.
|t Get Measurement of Porous Freestanding Thin Films Composed of Anatase TiO2 Nanofibers --
|g 4.2.1.
|t Sample Preparation --
|g 4.2.2.
|t R-T Calibration --
|g 4.2.3.
|t TET Measurement of Thermal Conductivity and Thermal Diffusivity --
|g 4.2.4.
|t Thermophysical Properties of Samples with Different Dimensions --
|g 4.2.5.
|t Intrinsic Thermal Conductivity of TiO2 Nanofibers --
|g 4.2.6.
|t Uncertainty Analysis --
|g 4.3.
|t Measurement of Micrometer-Thick Polymer Films --
|g 4.3.1.
|t Sample Preparation --
|g 4.3.2.
|t Electrical Resistance (R)-Temperature Coefficient Calibration --
|g 4.3.3.
|t Measurement of Thermal Conductivity and Thermal Diffusivity --
|g 4.3.4.
|t Thermophysical Properties of P3HT Thin Films with Different Dimensions --
|g 4.4.
|t Steady-State Electro-Raman Thermal (SERT) Technique --
|g 4.4.1.
|t Experimental Principle and Physical Model Development --
|g 4.4.2.
|t Experimental Setup for Measuring CNT Buckypaper --
|g 4.4.3.
|t Calibration Experiment --
|g 4.4.4.
|t Thermal Characterization of MWCNT Buckypapers --
|g 4.4.5.
|t Thermal Conductivity Analysis --
|g 4.4.6.
|t Uncertainty Induced by Location of Laser Focal Point --
|g 4.4.7.
|t Effect of Thermal and Electrical Contact Resistances and Thermal Transport in Electrodes --
|g 4.5.
|t SERT Measurement of MWCNT Bundles --
|g 4.6.
|t Extension of the Steady-State Techniques --
|t References --
|g 5.
|t Steady-State Optical-Based Thermal Probing And Characterization --
|g 5.1.
|t Sub-10-nm Temperature Measurement --
|g 5.1.1.
|t Introduction to Sub-10-nm Near-Field Focusing --
|g 5.1.2.
|t Experimental Design and Conduction --
|g 5.1.3.
|t Measurement Results --
|g 5.1.4.
|t Physics Behind Near-Field Focusing and Thermal Transport --
|g 5.2.
|t Thermal Probing at nm/SUB-nm Resolution for Studying Interface Thermal Transport --
|g 5.2.1.
|t Introduction --
|g 5.2.2.
|t Experimental Method --
|g 5.2.3.
|t Experimental Results --
|g 5.2.4.
|t Comparison with Molecular Dynamics Simulation --
|g 5.2.5.
|t Discussion --
|g 5.3.
|t Optical Heating and Thermal Sensing using Raman Spectrometer --
|g 5.3.1.
|t Thermal Conductivity Measurement of Suspended Filmlike Materials --
|g 5.3.2.
|t Thermal Conductivity Measurement of Suspended Nanowires --
|g 5.4.
|t Bilayer Sensor-Based Technique --
|g 5.5.
|t Further Consideration for Micro/Nanoscale Thermal Sensing and Characterization --
|g 5.5.1.
|t Electrothermal Sensing in Thermal Characterization of Coatings/Films --
|g 5.5.2.
|t Transient Photo-Heating and Thermal Sensing of Wirelike Samples --
|t References.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH21631904
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 24514365
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL848528
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10630497
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 518533
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis24514365
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00063322
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7293115
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7657562
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13035591
|
938 |
|
|
|a Internet Archive
|b INAR
|n experimentalmicr0000wang
|
994 |
|
|
|a 92
|b IZTAP
|