Cargando…

Experimental micro/nanoscale thermal transport /

"This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transien...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wang, Xinwei, 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn795912948
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 120620s2012 njua ob 001 0 eng d
010 |z  2011047244 
040 |a DG1  |b eng  |e rda  |e pn  |c DG1  |d YDXCP  |d OCLCO  |d EBLCP  |d OCLCQ  |d MYG  |d E7B  |d CDX  |d N$T  |d IDEBK  |d OCLCQ  |d OCLCA  |d OCLCQ  |d DEBSZ  |d RECBK  |d OCLCF  |d DEBBG  |d OCLCQ  |d COO  |d AZK  |d DG1  |d COCUF  |d DG1  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d NJR  |d U3W  |d OCLCQ  |d OCL  |d OCLCQ  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d MERER  |d CUY  |d OCLCQ  |d WYU  |d UWO  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d UKCRE  |d UKMGB  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCL  |d OCLCQ 
066 |c (S 
015 |a GBC077810  |2 bnb 
016 7 |a 019817649  |2 Uk 
019 |a 823249420  |a 824081598  |a 864909846  |a 961516334  |a 962633818  |a 988469547  |a 991919831  |a 1037707062  |a 1038691251  |a 1045489680  |a 1055368927  |a 1065942182  |a 1071789719  |a 1081222735  |a 1153524229  |a 1228621199  |a 1357618075 
020 |a 9781118310243  |q (electronic bk.) 
020 |a 1118310241  |q (electronic bk.) 
020 |a 9781118310199  |q (electronic bk.) 
020 |a 1118310195  |q (electronic bk.) 
020 |a 9781118310236  |q (electronic bk.) 
020 |a 1118310233  |q (electronic bk.) 
020 |z 9781118007440 
020 |z 1118007441 
020 |z 9781283941228  |q (MyiLibrary) 
020 |z 1283941228  |q (MyiLibrary) 
028 0 1 |a EB00063322  |b Recorded Books 
029 1 |a AU@  |b 000049595518 
029 1 |a CHBIS  |b 010879297 
029 1 |a CHNEW  |b 000939974 
029 1 |a CHVBK  |b 480202672 
029 1 |a DEBBG  |b BV040884821 
029 1 |a DEBBG  |b BV041828952 
029 1 |a DEBBG  |b BV041905767 
029 1 |a DEBBG  |b BV044162065 
029 1 |a DEBSZ  |b 423054279 
029 1 |a DEBSZ  |b 431089906 
029 1 |a DEBSZ  |b 485021145 
029 1 |a NZ1  |b 14686934 
029 1 |a NZ1  |b 15351054 
029 1 |a UKMGB  |b 019817649 
035 |a (OCoLC)795912948  |z (OCoLC)823249420  |z (OCoLC)824081598  |z (OCoLC)864909846  |z (OCoLC)961516334  |z (OCoLC)962633818  |z (OCoLC)988469547  |z (OCoLC)991919831  |z (OCoLC)1037707062  |z (OCoLC)1038691251  |z (OCoLC)1045489680  |z (OCoLC)1055368927  |z (OCoLC)1065942182  |z (OCoLC)1071789719  |z (OCoLC)1081222735  |z (OCoLC)1153524229  |z (OCoLC)1228621199  |z (OCoLC)1357618075 
037 |a 10.1002/9781118310243  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
050 4 |a TA418.9.N35  |b W365 2012eb 
072 7 |a TEC  |x 021000  |2 bisacsh 
082 0 4 |a 620.1/1596  |2 23 
084 |a TEC027000  |2 bisacsh 
049 |a UAMI 
100 1 |a Wang, Xinwei,  |d 1948-  |1 https://id.oclc.org/worldcat/entity/E39PBJkXpFyWGWP3tW9x6xkJjC 
245 1 0 |a Experimental micro/nanoscale thermal transport /  |c Xinwei Wang. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c 2012. 
300 |a 1 online resource (xiii, 264 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a Frontmatter -- Introduction -- Thermal Characterization in Frequency Domain -- Transient Technologies in the Time Domain -- Steady-State Thermal Characterization -- Steady-State Optical-Based Thermal Probing and Characterization -- Index. 
520 |a "This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transient electro-thermal technique, transient photo-electro-thermal technique, pulsed laser-assisted thermal relaxation technique, and steady-state electro-Raman-thermal technique. These techniques feature significantly improved ease of implementation, super signal-to-noise ratio, and have the capacity of measuring the thermal conductivity/diffusivity of various one-dimensional structures from dielectric, semiconductive, to metallic materials"--  |c Provided by publisher. 
520 |a "This is the first book to focus on thermal characterization of the thermophysical properties of micro/nanoscale materials"--  |c Provided by publisher. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Nanostructured materials  |x Thermal properties. 
650 0 |a Heat  |x Transmission. 
650 6 |a Nanomatériaux  |x Propriétés thermiques. 
650 6 |a Chaleur  |x Transmission. 
650 7 |a heat transmission.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Nanotechnology & MEMS.  |2 bisacsh 
650 7 |a Heat  |x Transmission  |2 fast 
758 |i has work:  |a Experimental micro/nanoscale thermal transport (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGQgR67FDTQ4yC9bkKv6Xd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Wang, Xinwei, 1948-  |t Experimental micro/nanoscale thermal transport.  |d Hoboken, New Jersey : Wiley, 2012  |z 9781118007440  |w (DLC) 2011047244  |w (OCoLC)754727784 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=848528  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials --  |g 1.1.1.  |t Thermal Transport Constrained by Material Size --  |g 1.1.2.  |t Thermal Transport Constrained by Time --  |g 1.1.3.  |t Thermal Transport Constrained by the Size of Physical Process --  |g 1.2.  |t Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales --  |g 1.2.1.  |t Equilibrium MD Prediction of Thermal Conductivity --  |g 1.2.2.  |t Nonequilibrium MD Study of Thermal Transport --  |g 1.2.3.  |t MD Study of Thermal Transport Constrained by Time --  |g 1.3.  |t Boltzmann Transportation Equation for Thermal Transport Study --  |g 1.4.  |t Direct Energy Carrier Relaxation Tracking (DECRT) --  |g 1.5.  |t Challenges in Characterizing Thermal Transport at Micro/Nanoscales --  |t References --  |g 2.  |t Thermal Characterization In Frequency Domain --  |g 2.1.  |t Frequency Domain Photoacoustic (PA) Technique --  |g 2.1.1.  |t Physical Model --  |g 2.1.2.  |t Experimental Details --  |g 2.1.3.  |t PA Measurement of Films and Bulk Materials --  |g 2.1.4.  |t Uncertainty of the PA Measurement --  |g 2.2.  |t Frequency Domain Photothermal Radiation (PTR) Technique --  |g 2.2.1.  |t Experimental Details of the PTR Technique --  |g 2.2.2.  |t PTR Measurement of Micrometer-Thick Films --  |g 2.2.3.  |t PTR with Internal Heating of Desired Locations --  |g 2.3.  |t Three-Omega Technique --  |g 2.3.1.  |t Physical Model of the 3ω Technique for One-Dimensional Structures --  |g 2.3.2.  |t Experimental Details --  |g 2.3.3.  |t Calibration of the Experiment --  |g 2.3.4.  |t Measurement of Micrometer-Thick Wires --  |g 2.3.5.  |t Effect of Radiation on Measurement Result --  |g 2.4.  |t Optical Heating Electrical Thermal Sensing (OHETS) Technique --  |g 2.4.1.  |t Experimental Principle and Physical Model --  |g 2.4.2.  |t Effect of Nonuniform Distribution of Laser Beam --  |g 2.4.3.  |t Experimental Details and Calibration --  |g 2.4.4.  |t Measurement of Electrically Conductive Wires --  |g 2.4.5.  |t Measurement of Nonconductive Wires --  |g 2.4.6.  |t Effect of Au Coating on Measurement --  |g 2.4.7.  |t Temperature Rise in the OHETS Experiment --  |g 2.5.  |t Comparison Among the Techniques --  |t References --  |g 3.  |t Transient Technologies In The Time Domain --  |g 3.1.  |t Transient Photo-Electro-Thermal (TPET) Technique --  |g 3.1.1.  |t Experimental Principles --  |g 3.1.2.  |t Physical Model Development --  |g 3.1.3.  |t Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam --  |g 3.1.4.  |t Experimental Setup --  |g 3.1.5.  |t Technique Validation --  |g 3.1.6.  |t Thermal Characterization of SWCNT Bundles and Cloth Fibers --  |g 3.2.  |t Transient Electrothermal (TET) Technique --  |g 3.2.1.  |t Physical Principles of the TET Technique --  |g 3.2.2.  |t Methods for Data Analysis to Determine the Thermal Diffusivity --  |g 3.2.3.  |t Effect of Nonconstant Electrical Heating --  |g 3.2.4.  |t Experimental Details --  |g 3.2.5.  |t Technique Validation --  |g 3.2.6.  |t Measurement of SWCNT Bundles --  |g 3.2.7.  |t Measurement of Polyester Fibers --  |g 3.2.8.  |t Measurement of Micro/Submicroscale Polyacrylonitrile Wires --  |g 3.3.  |t Pulsed Laser-Assisted Thermal Relaxation Technique --  |g 3.3.1.  |t Experimental Principles --  |g 3.3.2.  |t Physical Model for the PLTR Technique --  |g 3.3.3.  |t Methods to Determine the Thermal Diffusivity --  |g 3.3.4.  |t Experimental Setup and Technique Validation --  |g 3.3.5.  |t Measurement of Multiwalled Carbon Nanotube (MWCNT) Bundles --  |g 3.3.6.  |t Measurement of Individual Microscale Carbon Fibers --  |g 3.4.  |t Super Channeling Effect for Thermal Transport in Micro/Nanoscale Wires --  |g 3.5.  |t Multidimensional Thermal Characterization --  |g 3.5.1.  |t Sample Preparation --  |g 3.5.2.  |t Thermal Characterization Design --  |g 3.5.3.  |t Thermal Transport Along the Axial Direction of Amorphous TiO2 Nanotubes --  |g 3.5.4.  |t Thermal Transport in the Cross-Tube Direction of Amorphous TiO2 Nanotubes --  |g 3.5.5.  |t Evaluation of Thermal Contact Resistance Between Amorphous TiO2 Nanotubes --  |g 3.5.6.  |t Anisotropic Thermal Transport in Anatase TiO2 Nanotubes --  |g 3.6.  |t Remarks on the Transient Technologies --  |t References --  |g 4.  |t Steady-State Thermal Characterization --  |g 4.1.  |t Generalized Electrothermal Characterization --  |g 4.1.1.  |t Generalized Electrothermal (GET) Technique: Combined Transient and Steady States --  |g 4.1.2.  |t Experimental Setup --  |g 4.1.3.  |t Experimental Details --  |g 4.1.4.  |t Measurement of MWCNT Bundle with L = 3.33 mm and D = 94.5 μm --  |g 4.1.5.  |t Measurement of MWCNT Bundle with L = 2.90 mm and D = 233 μm --  |g 4.1.6.  |t Analysis of the Tube-to-Tube Thermal Contact Resistance --  |g 4.1.7.  |t Effect of Radiation Heat Loss --  |g 4.2.  |t Get Measurement of Porous Freestanding Thin Films Composed of Anatase TiO2 Nanofibers --  |g 4.2.1.  |t Sample Preparation --  |g 4.2.2.  |t R-T Calibration --  |g 4.2.3.  |t TET Measurement of Thermal Conductivity and Thermal Diffusivity --  |g 4.2.4.  |t Thermophysical Properties of Samples with Different Dimensions --  |g 4.2.5.  |t Intrinsic Thermal Conductivity of TiO2 Nanofibers --  |g 4.2.6.  |t Uncertainty Analysis --  |g 4.3.  |t Measurement of Micrometer-Thick Polymer Films --  |g 4.3.1.  |t Sample Preparation --  |g 4.3.2.  |t Electrical Resistance (R)-Temperature Coefficient Calibration --  |g 4.3.3.  |t Measurement of Thermal Conductivity and Thermal Diffusivity --  |g 4.3.4.  |t Thermophysical Properties of P3HT Thin Films with Different Dimensions --  |g 4.4.  |t Steady-State Electro-Raman Thermal (SERT) Technique --  |g 4.4.1.  |t Experimental Principle and Physical Model Development --  |g 4.4.2.  |t Experimental Setup for Measuring CNT Buckypaper --  |g 4.4.3.  |t Calibration Experiment --  |g 4.4.4.  |t Thermal Characterization of MWCNT Buckypapers --  |g 4.4.5.  |t Thermal Conductivity Analysis --  |g 4.4.6.  |t Uncertainty Induced by Location of Laser Focal Point --  |g 4.4.7.  |t Effect of Thermal and Electrical Contact Resistances and Thermal Transport in Electrodes --  |g 4.5.  |t SERT Measurement of MWCNT Bundles --  |g 4.6.  |t Extension of the Steady-State Techniques --  |t References --  |g 5.  |t Steady-State Optical-Based Thermal Probing And Characterization --  |g 5.1.  |t Sub-10-nm Temperature Measurement --  |g 5.1.1.  |t Introduction to Sub-10-nm Near-Field Focusing --  |g 5.1.2.  |t Experimental Design and Conduction --  |g 5.1.3.  |t Measurement Results --  |g 5.1.4.  |t Physics Behind Near-Field Focusing and Thermal Transport --  |g 5.2.  |t Thermal Probing at nm/SUB-nm Resolution for Studying Interface Thermal Transport --  |g 5.2.1.  |t Introduction --  |g 5.2.2.  |t Experimental Method --  |g 5.2.3.  |t Experimental Results --  |g 5.2.4.  |t Comparison with Molecular Dynamics Simulation --  |g 5.2.5.  |t Discussion --  |g 5.3.  |t Optical Heating and Thermal Sensing using Raman Spectrometer --  |g 5.3.1.  |t Thermal Conductivity Measurement of Suspended Filmlike Materials --  |g 5.3.2.  |t Thermal Conductivity Measurement of Suspended Nanowires --  |g 5.4.  |t Bilayer Sensor-Based Technique --  |g 5.5.  |t Further Consideration for Micro/Nanoscale Thermal Sensing and Characterization --  |g 5.5.1.  |t Electrothermal Sensing in Thermal Characterization of Coatings/Films --  |g 5.5.2.  |t Transient Photo-Heating and Thermal Sensing of Wirelike Samples --  |t References. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21631904 
938 |a Coutts Information Services  |b COUT  |n 24514365 
938 |a EBL - Ebook Library  |b EBLB  |n EBL848528 
938 |a ebrary  |b EBRY  |n ebr10630497 
938 |a EBSCOhost  |b EBSC  |n 518533 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24514365 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00063322 
938 |a YBP Library Services  |b YANK  |n 7293115 
938 |a YBP Library Services  |b YANK  |n 7657562 
938 |a YBP Library Services  |b YANK  |n 13035591 
938 |a Internet Archive  |b INAR  |n experimentalmicr0000wang 
994 |a 92  |b IZTAP