Machine learning in image steganalysis /
"The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"--
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, United Kingdom :
IEEE/Wiley,
2012.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_ocn795645159 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 120614s2012 enk ob 001 0 eng | ||
010 | |a 2012024649 | ||
040 | |a DLC |b eng |e pn |c DLC |d YDX |d DG1 |d CDX |d IDEBK |d COO |d YDXCP |d E7B |d EBLCP |d IEEEE |d ZMC |d N$T |d DEBSZ |d UMI |d B24X7 |d UBY |d TEFOD |d OCLCF |d TEFOD |d OCLCQ |d DG1 |d MOR |d LIP |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d COCUF |d OCLCQ |d STF |d WRM |d CEF |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d UAB |d OCLCQ |d DKC |d OCLCQ |d OL$ |d OCLCQ |d ERF |d UKBTH |d UHL |d OCLCQ |d UKUOP |d OCLCO |d OCLCQ |d UKAHL |d TAC |d OCLCQ |d OCLCO |d OCLCQ |d U9X |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 809555684 |a 811732944 |a 812517233 |a 841331224 |a 1112553664 |a 1113180052 |a 1113764267 |a 1302703250 |a 1355684743 | ||
020 | |a 9781118437988 |q (ePub) | ||
020 | |a 1118437985 |q (ePub) | ||
020 | |a 9781118437964 |q (Adobe PDF) | ||
020 | |a 1118437969 |q (Adobe PDF) | ||
020 | |a 9781118438008 |q (MobiPocket) | ||
020 | |a 1118438000 |q (MobiPocket) | ||
020 | |a 9781118437957 |q (electronic bk.) | ||
020 | |a 1118437950 |q (electronic bk.) | ||
020 | |z 9780470663059 |q (hardback) | ||
020 | |z 0470663057 | ||
024 | 8 | |a 9786613916372 | |
024 | 8 | |a 9781118437988 | |
029 | 1 | |a AU@ |b 000049549025 | |
029 | 1 | |a AU@ |b 000051432948 | |
029 | 1 | |a CHNEW |b 000939945 | |
029 | 1 | |a CHVBK |b 480202389 | |
029 | 1 | |a DEBBG |b BV041121690 | |
029 | 1 | |a DEBBG |b BV044049835 | |
029 | 1 | |a DEBSZ |b 377426814 | |
029 | 1 | |a DEBSZ |b 396766129 | |
029 | 1 | |a DEBSZ |b 397381646 | |
029 | 1 | |a DEBSZ |b 431219958 | |
029 | 1 | |a DEBSZ |b 449322890 | |
029 | 1 | |a DEBSZ |b 485020955 | |
029 | 1 | |a GBVCP |b 790199262 | |
029 | 1 | |a NZ1 |b 14976671 | |
029 | 1 | |a AU@ |b 000067095933 | |
035 | |a (OCoLC)795645159 |z (OCoLC)809555684 |z (OCoLC)811732944 |z (OCoLC)812517233 |z (OCoLC)841331224 |z (OCoLC)1112553664 |z (OCoLC)1113180052 |z (OCoLC)1113764267 |z (OCoLC)1302703250 |z (OCoLC)1355684743 | ||
037 | |a 10.1002/9781118437957 |b Wiley InterScience |n http://www3.interscience.wiley.com | ||
037 | |a 347C45D1-7134-4AC6-AFD6-80E756114D12 |b OverDrive, Inc. |n http://www.overdrive.com | ||
042 | |a pcc | ||
050 | 0 | 0 | |a Q325.5 |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 0 | 0 | |a 006.3/1 |2 23 |
084 | |a SCI067000 |2 bisacsh | ||
049 | |a UAMI | ||
100 | 1 | |a Schaathun, Hans Georg. | |
245 | 1 | 0 | |a Machine learning in image steganalysis / |c Hans Georg Schaathun. |
260 | |a Chichester, West Sussex, United Kingdom : |b IEEE/Wiley, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
520 | |a "The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"-- |c Provided by publisher. | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record and CIP data provided by publisher. | |
505 | 0 | 0 | |6 880-01 |t Steganography and Steganalysis -- |t Getting Started with a Classifier -- |t Features. Histogram Analysis -- |t Bit-Plane Analysis -- |t More Spatial Domain Features -- |t The Wavelets Domain -- |t Steganalysis in the JPEG Domain -- |t Calibration Techniques -- |t Classifiers. Simulation and Evaluation -- |t Support Vector Machines -- |t Other Classification Algorithms -- |t Feature Selection and Evaluation -- |t The Steganalysis Problem -- |t Future of the Field. |
505 | 0 | |a Front Matter -- Overview. Introduction -- Steganography and Steganalysis -- Getting Started with a Classifier -- Features. Histogram Analysis -- Bit-Plane Analysis -- More Spatial Domain Features -- The Wavelets Domain -- Steganalysis in the JPEG Domain -- Calibration Techniques -- Classifiers. Simulation and Evaluation -- Support Vector Machines -- Other Classification Algorithms -- Feature Selection and Evaluation -- The Steganalysis Problem -- Future of the Field -- Bibliography -- Index. | |
542 | |f Copyright © Wiley-IEEE Press |g 2012 | ||
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
590 | |a O'Reilly |b O'Reilly Online Learning: Academic/Public Library Edition | ||
650 | 0 | |a Machine learning. | |
650 | 0 | |a Wavelets (Mathematics) | |
650 | 0 | |a Data encryption (Computer science) | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Ondelettes. | |
650 | 6 | |a Chiffrement (Informatique) | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Data encryption (Computer science) |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a Wavelets (Mathematics) |2 fast | |
758 | |i has work: |a Machine learning in image steganalysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGkgY9C4fyBqg4rCXvgDjd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Schaathun, Hans Georg. |t Machine learning in image steganalysis. |d Hoboken : Wiley, 2012 |z 9780470663059 |w (DLC) 2012016642 |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1022347 |z Texto completo |
856 | 4 | 0 | |u https://learning.oreilly.com/library/view/~/9781118437988/?ar |z Texto completo |
880 | 0 | 0 | |6 505-01/(S |g Machine generated contents note: |g pt. I |t OVERVIEW -- |g 1. |t Introduction -- |g 1.1. |t Real Threat or Hype-- |g 1.2. |t Artificial Intelligence and Learning -- |g 1.3. |t How to Read this Book -- |g 2. |t Steganography and Steganalysis -- |g 2.1. |t Cryptography versus Steganography -- |g 2.2. |t Steganography -- |g 2.2.1. |t Prisoners' Problem -- |g 2.2.2. |t Covers -- Synthesis and Modification -- |g 2.2.3. |t Keys and Kerckhoffs' Principle -- |g 2.2.4. |t LSB Embedding -- |g 2.2.5. |t Steganography and Watermarking -- |g 2.2.6. |t Different Media Types -- |g 2.3. |t Steganalysis -- |g 2.3.1. |t Objective of Steganalysis -- |g 2.3.2. |t Blind and Targeted Steganalysis -- |g 2.3.3. |t Main Approaches to Steganalysis -- |g 2.3.4. |t Example: Pairs of Values -- |g 2.4. |t Summary and Notes -- |g 3. |t Getting Started with a Classifier -- |g 3.1. |t Classification -- |g 3.1.1. |t Learning Classifiers -- |g 3.1.2. |t Accuracy -- |g 3.2. |t Estimation and Confidence -- |g 3.3. |t Using libSVM -- |g 3.3.1. |t Training and Testing -- |g 3.3.2. |t Grid Search and Cross-validation -- |g 3.4. |t Using Python -- |g 3.4.1. |t Why we use Python -- |g 3.4.2. |t Getting Started with Python -- |g 3.4.3. |t Scientific Computing -- |g 3.4.4. |t Python Imaging Library -- |g 3.4.5. |t Example: Image Histogram -- |g 3.5. |t Images for Testing -- |g 3.6. |t Further Reading -- |g pt. II |t FEATURES -- |g 4. |t Histogram Analysis -- |g 4.1. |t Early Histogram Analysis -- |g 4.2. |t Notation -- |g 4.3. |t Additive Independent Noise -- |g 4.3.1. |t Effect of Noise -- |g 4.3.2. |t Histogram Characteristic Function -- |g 4.3.3. |t Moments of the Characteristic Function -- |g 4.3.4. |t Amplitude of Local Extrema -- |g 4.4. |t Multi-dimensional Histograms -- |g 4.4.1. |t HCF Features for Colour Images -- |g 4.4.2. |t Co-occurrence Matrix -- |g 4.5. |t Experiment and Comparison -- |g 5. |t Bit-plane Analysis -- |g 5.1. |t Visual Steganalysis -- |g 5.2. |t Autocorrelation Features -- |g 5.3. |t Binary Similarity Measures -- |g 5.4. |t Evaluation and Comparison -- |g 6. |t More Spatial Domain Features -- |g 6.1. |t Difference Matrix -- |g 6.1.1. |t EM Features of Chen et al. -- |g 6.1.2. |t Markov Models and the SPAM Features -- |g 6.1.3. |t Higher-order Differences -- |g 6.1.4. |t Run-length Analysis -- |g 6.2. |t Image Quality Measures -- |g 6.3. |t Colour Images -- |g 6.4. |t Experiment and Comparison -- |g 7. |t Wavelets Domain -- |g 7.1. |t Visual View -- |g 7.2. |t Wavelet Domain -- |g 7.2.1. |t Fast Wavelet Transform -- |g 7.2.2. |t Example: The Haar Wavelet -- |g 7.2.3. |t Wavelet Transform in Python -- |g 7.2.4. |t Other Wavelet Transforms -- |g 7.3. |t Farid's Features -- |g 7.3.1. |t Image Statistics -- |g 7.3.2. |t Linear Predictor -- |g 7.3.3. |t Notes -- |g 7.4. |t HCF in the Wavelet Domain -- |g 7.4.1. |t Notes and Further Reading -- |g 7.5. |t Denoising and the WAM Features -- |g 7.5.1. |t Denoising Algorithm -- |g 7.5.2. |t Locally Adaptive LAW-ML -- |g 7.5.3. |t Wavelet Absolute Moments -- |g 7.6. |t Experiment and Comparison -- |g 8. |t Steganalysis in the JPEG Domain -- |g 8.1. |t JPEG Compression -- |g 8.1.1. |t Compression -- |g 8.1.2. |t Programming JPEG Steganography -- |g 8.1.3. |t Embedding in JPEG -- |g 8.2. |t Histogram Analysis -- |g 8.2.1. |t JPEG Histogram -- |g 8.2.2. |t First-order Features -- |g 8.2.3. |t Second-order Features -- |g 8.2.4. |t Histogram Characteristic Function -- |g 8.3. |t Blockiness -- |g 8.4. |t Markov Model-based Features -- |g 8.5. |t Conditional Probabilities -- |g 8.6. |t Experiment and Comparison -- |g 9. |t Calibration Techniques -- |g 9.1. |t Calibrated Features -- |g 9.2. |t JPEG Calibration -- |g 9.2.1. |t FRI-23 Feature Set -- |g 9.2.2. |t Pevny Features and Cartesian Calibration -- |g 9.3. |t Calibration by Downsampling -- |g 9.3.1. |t Downsampling as Calibration -- |g 9.3.2. |t Calibrated HCF-COM -- |g 9.3.3. |t Sum and Difference Images -- |g 9.3.4. |t Features for Colour Images -- |g 9.3.5. |t Pixel Selection -- |g 9.3.6. |t Other Features Based on Downsampling -- |g 9.3.7. |t Evaluation and Notes -- |g 9.4. |t Calibration in General -- |g 9.5. |t Progressive Randomisation -- |g pt. III |t CLASSIFIERS -- |g 10. |t Simulation and Evaluation -- |g 10.1. |t Estimation and Simulation -- |g 10.1.1. |t Binomial Distribution -- |g 10.1.2. |t Probabilities and Sampling -- |g 10.1.3. |t Monte Carlo Simulations -- |g 10.1.4. |t Confidence Intervals -- |g 10.2. |t Scalar Measures -- |g 10.2.1. |t Two Error Types -- |g 10.2.2. |t Common Scalar Measures -- |g 10.3. |t Receiver Operating Curve -- |g 10.3.1. |t libSVM API for Python -- |g 10.3.2. |t ROC Curve -- |g 10.3.3. |t Choosing a Point on the ROC Curve -- |g 10.3.4. |t Confidence and Variance -- |g 10.3.5. |t Area Under the Curve -- |g 10.4. |t Experimental Methodology -- |g 10.4.1. |t Feature Storage -- |g 10.4.2. |t Parallel Computation -- |g 10.4.3. |t Dangers of Large-scale Experiments -- |g 10.5. |t Comparison and Hypothesis Testing -- |g 10.5.1. |t Hypothesis Test -- |g 10.5.2. |t Comparing Two Binomial Proportions -- |g 10.6. |t Summary -- |g 11. |t Support Vector Machines -- |g 11.1. |t Linear Classifiers -- |g 11.1.1. |t Linearly Separable Problems -- |g 11.1.2. |t Non-separable Problems -- |g 11.2. |t Kernel Function -- |g 11.2.1. |t Example: The XOR Function -- |g 11.2.2. |t SVM Algorithm -- |g 11.3. |t ν-SVM -- |g 11.4. |t Multi-class Methods -- |g 11.5. |t One-class Methods -- |g 11.5.1. |t One-class SVM Solution -- |g 11.5.2. |t Practical Problems -- |g 11.5.3. |t Multiple Hyperspheres -- |g 11.6. |t Summary -- |g 12. |t Other Classification Algorithms -- |g 12.1. |t Bayesian Classifiers -- |g 12.1.1. |t Classification Regions and Errors -- |g 12.1.2. |t Misclassification Risk -- |g 12.1.3. |t Naive Bayes Classifier -- |g 12.1.4. |t Security Criterion -- |g 12.2. |t Estimating Probability Distributions -- |g 12.2.1. |t Histogram -- |g 12.2.2. |t Kernel Density Estimator -- |g 12.3. |t Multivariate Regression Analysis -- |g 12.3.1. |t Linear Regression -- |g 12.3.2. |t Support Vector Regression -- |g 12.4. |t Unsupervised Learning -- |g 12.4.1. |t K-means Clustering -- |g 12.5. |t Summary -- |g 13. |t Feature Selection and Evaluation -- |g 13.1. |t Overfitting and Underfitting -- |g 13.1.1. |t Feature Selection and Feature Extraction -- |g 13.2. |t Scalar Feature Selection -- |g 13.2.1. |t Analysis of Variance -- |g 13.3. |t Feature Subset Selection -- |g 13.3.1. |t Subset Evaluation -- |g 13.3.2. |t Search Algorithms -- |g 13.4. |t Selection Using Information Theory -- |g 13.4.1. |t Entropy -- |g 13.4.2. |t Mutual Information -- |g 13.4.3. |t Multivariate Information -- |g 13.4.4. |t Information Theory with Continuous Sets -- |g 13.4.5. |t Estimation of Entropy and Information -- |g 13.4.6. |t Ranking Features -- |g 13.5. |t Boosting Feature Selection -- |g 13.6. |t Applications in Steganalysis -- |g 13.6.1. |t Correlation Coefficient -- |g 13.6.2. |t Optimised Feature Vectors for JPEG -- |g 14. |t Steganalysis Problem -- |g 14.1. |t Different Use Cases -- |g 14.1.1. |t Who are Alice and Bob-- |g 14.1.2. |t Wendy's Role -- |g 14.1.3. |t Pooled Steganalysis -- |g 14.1.4. |t Quantitative Steganalysis -- |g 14.2. |t Images and Training Sets -- |g 14.2.1. |t Choosing the Cover Source -- |g 14.2.2. |t Training Scenario -- |g 14.2.3. |t Steganalytic Game -- |g 14.3. |t Composite Classifier Systems -- |g 14.3.1. |t Fusion -- |g 14.3.2. |t Multi-layer Classifier for JPEG -- |g 14.3.3. |t Benefits of Composite Classifiers -- |g 14.4. |t Summary -- |g 15. |t Future of the Field -- |g 15.1. |t Image Forensics -- |g 15.2. |t Conclusions and Notes. |
938 | |a Askews and Holts Library Services |b ASKH |n AH25045848 | ||
938 | |a Books 24x7 |b B247 |n bks00051199 | ||
938 | |a Coutts Information Services |b COUT |n 21782462 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1022347 | ||
938 | |a ebrary |b EBRY |n ebr10602086 | ||
938 | |a EBSCOhost |b EBSC |n 481819 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 391637 | ||
938 | |a YBP Library Services |b YANK |n 9808280 | ||
938 | |a YBP Library Services |b YANK |n 9672715 | ||
938 | |a YBP Library Services |b YANK |n 9661974 | ||
994 | |a 92 |b IZTAP |