Cargando…

Nonlinear Perron-Frobenius theory /

In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lemmens, Bas, Nussbaum, Roger D., 1944-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Cambridge tracts in mathematics ; 189.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn794731490
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 110218s2012 enka ob 001 0 eng d
040 |a UkCbUP  |b eng  |e pn  |c AUD  |d EBLCP  |d MHW  |d AZU  |d OCLCO  |d MERUC  |d CDX  |d IDEBK  |d ORU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d YDXCP  |d N$T  |d E7B  |d OSU  |d OCLCQ  |d NJR  |d OCLCQ  |d UAB  |d OCLCQ  |d COCUF  |d STF  |d LOA  |d CUY  |d ZCU  |d ICG  |d INT  |d K6U  |d VT2  |d U3W  |d AU@  |d DEBBG  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d OCLCQ  |d TXI  |d DKC  |d OCLCQ  |d A6Q  |d G3B  |d OCLCQ  |d VLY  |d UKAHL  |d LUN  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d S9M  |d OCLCL 
066 |c (S 
019 |a 798613255  |a 798795326  |a 801405882  |a 801926502  |a 817095858  |a 1055393161  |a 1058734737  |a 1066441973  |a 1081205956  |a 1096215940  |a 1162465998  |a 1167504271  |a 1228577630  |a 1241863053  |a 1259172929 
020 |a 9781139026079  |q (ebook) 
020 |a 1139026070  |q (ebook) 
020 |a 9780521898812  |q (hardback) 
020 |a 0521898811  |q (hardback) 
020 |a 1280877952 
020 |a 9781280877957 
020 |a 9781139376822 
020 |a 1139376829 
020 |a 9781139379687  |q (electronic bk.) 
020 |a 1139379682  |q (electronic bk.) 
020 |a 9781139375399 
020 |a 1139375393 
020 |a 1107226341 
020 |a 9781107226340 
020 |a 9786613719263 
020 |a 6613719269 
020 |a 1139378252 
020 |a 9781139378253 
020 |a 1139371401 
020 |a 9781139371407 
024 8 |a 9786613719263 
029 1 |a DEBSZ  |b 372602304 
029 1 |a DEBSZ  |b 379326841 
029 1 |a NLGGC  |b 344425533 
029 1 |a AU@  |b 000057010061 
035 |a (OCoLC)794731490  |z (OCoLC)798613255  |z (OCoLC)798795326  |z (OCoLC)801405882  |z (OCoLC)801926502  |z (OCoLC)817095858  |z (OCoLC)1055393161  |z (OCoLC)1058734737  |z (OCoLC)1066441973  |z (OCoLC)1081205956  |z (OCoLC)1096215940  |z (OCoLC)1162465998  |z (OCoLC)1167504271  |z (OCoLC)1228577630  |z (OCoLC)1241863053  |z (OCoLC)1259172929 
037 |a 371926  |b MIL 
050 4 |a QA188 .L456 2012 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT  |x 002050  |2 bisacsh 
082 0 4 |a 512.5  |a 512/.5 
084 |a MAT007000  |2 bisacsh 
049 |a UAMI 
245 0 0 |a Nonlinear Perron-Frobenius theory /  |c Bas Lemmens, Roger Nussbaum. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource (xii, 323 pages) :  |b illustrations, tables 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge tracts in mathematics ;  |v 189 
500 |a Title from publishers bibliographic system (viewed 09 May 2012). 
504 |a Includes chapter notes and comments, bibliographical references (pages 307-318), list of symbols, and index. 
505 0 |6 880-01  |a Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm. 
520 |a In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Non-negative matrices. 
650 0 |a Eigenvalues. 
650 0 |a Eigenvectors. 
650 0 |a Algebras, Linear. 
650 6 |a Matrices non-négatives. 
650 6 |a Valeurs propres. 
650 6 |a Vecteurs. 
650 6 |a Algèbre linéaire. 
650 7 |a MATHEMATICS  |x Differential Equations.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Linear.  |2 bisacsh 
650 7 |a Álgebra lineal  |2 embne 
650 0 7 |a Matrices no negativas  |2 embucm 
650 7 |a Algebras, Linear  |2 fast 
650 7 |a Eigenvalues  |2 fast 
650 7 |a Eigenvectors  |2 fast 
650 7 |a Non-negative matrices  |2 fast 
700 1 |a Lemmens, Bas. 
700 1 |a Nussbaum, Roger D.,  |d 1944-  |1 https://id.oclc.org/worldcat/entity/E39PBJrm49pkGv9JmP7hGHkMT3 
758 |i has work:  |a Nonlinear Perron-Frobenius theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFWHQwxWdmJ9fRW4GXTrMd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9780521898812 
830 0 |a Cambridge tracts in mathematics ;  |v 189. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=880642  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t What is nonlinear Perron--Frobenius theory--  |g 1.1.  |t Classical Perron--Frobenius theory --  |g 1.2.  |t Cones and partial orderings --  |g 1.3.  |t Order-preserving maps --  |g 1.4.  |t Subhomogeneous maps --  |g 1.5.  |t Topical maps --  |g 1.6.  |t Integral-preserving maps --  |g 2.  |t Non-expansiveness and nonlinear Perron--Frobenius theory --  |g 2.1.  |t Hilbert's and Thompson's metrics --  |g 2.2.  |t Polyhedral cones --  |g 2.3.  |t Lorentz cones --  |g 2.4.  |t cone of positive-semidefinite symmetric matrices --  |g 2.5.  |t Completeness --  |g 2.6.  |t Convexity and geodesics --  |g 2.7.  |t Topical maps and the sup-norm --  |g 2.8.  |t Integral-preserving maps and the l1-norm --  |g 3.  |t Dynamics of non-expansive maps --  |g 3.1.  |t Basic properties of non-expansive maps --  |g 3.2.  |t Fixed-point theorems for non-expansive maps --  |g 3.3.  |t Horofunctions and horoballs --  |g 3.4.  |t Denjoy--Wolff type theorem --  |g 3.5.  |t Non-expansive retractions --  |g 4.  |t Sup-norm non-expansive maps --  |g 4.1.  |t size of the ω-limit sets --  |g 4.2.  |t Periods of periodic points --  |g 4.3.  |t Iterates of topical maps --  |g 5.  |t Eigenvectors and eigenvalues of nonlinear cone maps --  |g 5.1.  |t Extensions of order-preserving maps --  |g 5.2.  |t cone spectrum --  |g 5.3.  |t cone spectral radius --  |g 5.4.  |t Eigenvectors corresponding to the cone spectral radius --  |g 5.5.  |t Continuity of the cone spectral radius --  |g 5.6.  |t Collatz--Wielandt formula --  |g 6.  |t Eigenvectors in the interior of the cone --  |g 6.1.  |t First principles --  |g 6.2.  |t Perturbation method --  |g 6.3.  |t Bounded invariant sets --  |g 6.4.  |t Uniqueness of the eigenvector --  |g 6.5.  |t Convergence to a unique eigenvector --  |g 6.6.  |t Means and their eigenvectors --  |g 7.  |t Applications to matrix scaling problems --  |g 7.1.  |t Matrix scaling: a fixed-point approach --  |g 7.2.  |t compatibility condition --  |g 7.3.  |t Special DAD theorems --  |g 7.4.  |t Doubly stochastic matrices: the classic case --  |g 7.5.  |t Scaling to row stochastic matrices --  |g 8.  |t Dynamics of subhomogeneous maps --  |g 8.1.  |t Iterations on polyhedral cones --  |g 8.2.  |t Periodic orbits in polyhedral cones --  |g 8.3.  |t Denjoy--Wolff theorems for cone maps --  |g 8.4.  |t Denjoy--Wolff theorem for polyhedral cones --  |g 9.  |t Dynamics of integral-preserving maps --  |g 9.1.  |t Lattice homomorphisms --  |g 9.2.  |t Periodic orbits of lower semi-lattice homomorphisms --  |g 9.3.  |t Periodic points and admissible arrays --  |g 9.4.  |t Computing periods of admissible arrays --  |g 9.5.  |t Maps on the whole space --  |g Appendix  |t A Birkhoff--Hopf theorem --  |g A.1.  |t Preliminaries --  |g A.2.  |t Almost Archimedean cones --  |g A.3.  |t Projective diameter --  |g A.4.  |t Birkhoff--Hopf theorem: reduction to two dimensions --  |g A.5.  |t Two-dimensional cones --  |g A.6.  |t Completion of the proof of the Birkhoff--Hopf theorem --  |g A.7.  |t Eigenvectors of cone-linear maps --  |g Appendix B  |t Classical Perron--Frobenius theory --  |g B.1.  |t general version of Perron's theorem --  |g B.2.  |t finite-dimensional Krein--Rutman theorem --  |g B.3.  |t Irreducible linear maps --  |g B.4.  |t peripheral spectrum. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21939974 
938 |a Coutts Information Services  |b COUT  |n 22835444 
938 |a EBL - Ebook Library  |b EBLB  |n EBL880642 
938 |a ebrary  |b EBRY  |n ebr10574287 
938 |a EBSCOhost  |b EBSC  |n 443672 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 371926 
938 |a YBP Library Services  |b YANK  |n 9445063 
938 |a YBP Library Services  |b YANK  |n 7636325 
938 |a YBP Library Services  |b YANK  |n 8923699 
938 |a YBP Library Services  |b YANK  |n 9003528 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28321254 
994 |a 92  |b IZTAP