|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn794731490 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
110218s2012 enka ob 001 0 eng d |
040 |
|
|
|a UkCbUP
|b eng
|e pn
|c AUD
|d EBLCP
|d MHW
|d AZU
|d OCLCO
|d MERUC
|d CDX
|d IDEBK
|d ORU
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCF
|d YDXCP
|d N$T
|d E7B
|d OSU
|d OCLCQ
|d NJR
|d OCLCQ
|d UAB
|d OCLCQ
|d COCUF
|d STF
|d LOA
|d CUY
|d ZCU
|d ICG
|d INT
|d K6U
|d VT2
|d U3W
|d AU@
|d DEBBG
|d OCLCQ
|d WYU
|d LVT
|d TKN
|d OCLCQ
|d TXI
|d DKC
|d OCLCQ
|d A6Q
|d G3B
|d OCLCQ
|d VLY
|d UKAHL
|d LUN
|d AJS
|d OCLCQ
|d OCLCO
|d OCLCQ
|d S9M
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 798613255
|a 798795326
|a 801405882
|a 801926502
|a 817095858
|a 1055393161
|a 1058734737
|a 1066441973
|a 1081205956
|a 1096215940
|a 1162465998
|a 1167504271
|a 1228577630
|a 1241863053
|a 1259172929
|
020 |
|
|
|a 9781139026079
|q (ebook)
|
020 |
|
|
|a 1139026070
|q (ebook)
|
020 |
|
|
|a 9780521898812
|q (hardback)
|
020 |
|
|
|a 0521898811
|q (hardback)
|
020 |
|
|
|a 1280877952
|
020 |
|
|
|a 9781280877957
|
020 |
|
|
|a 9781139376822
|
020 |
|
|
|a 1139376829
|
020 |
|
|
|a 9781139379687
|q (electronic bk.)
|
020 |
|
|
|a 1139379682
|q (electronic bk.)
|
020 |
|
|
|a 9781139375399
|
020 |
|
|
|a 1139375393
|
020 |
|
|
|a 1107226341
|
020 |
|
|
|a 9781107226340
|
020 |
|
|
|a 9786613719263
|
020 |
|
|
|a 6613719269
|
020 |
|
|
|a 1139378252
|
020 |
|
|
|a 9781139378253
|
020 |
|
|
|a 1139371401
|
020 |
|
|
|a 9781139371407
|
024 |
8 |
|
|a 9786613719263
|
029 |
1 |
|
|a DEBSZ
|b 372602304
|
029 |
1 |
|
|a DEBSZ
|b 379326841
|
029 |
1 |
|
|a NLGGC
|b 344425533
|
029 |
1 |
|
|a AU@
|b 000057010061
|
035 |
|
|
|a (OCoLC)794731490
|z (OCoLC)798613255
|z (OCoLC)798795326
|z (OCoLC)801405882
|z (OCoLC)801926502
|z (OCoLC)817095858
|z (OCoLC)1055393161
|z (OCoLC)1058734737
|z (OCoLC)1066441973
|z (OCoLC)1081205956
|z (OCoLC)1096215940
|z (OCoLC)1162465998
|z (OCoLC)1167504271
|z (OCoLC)1228577630
|z (OCoLC)1241863053
|z (OCoLC)1259172929
|
037 |
|
|
|a 371926
|b MIL
|
050 |
|
4 |
|a QA188 .L456 2012
|
072 |
|
7 |
|a PBKJ
|2 bicssc
|
072 |
|
7 |
|a MAT
|x 002050
|2 bisacsh
|
082 |
0 |
4 |
|a 512.5
|a 512/.5
|
084 |
|
|
|a MAT007000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Nonlinear Perron-Frobenius theory /
|c Bas Lemmens, Roger Nussbaum.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (xii, 323 pages) :
|b illustrations, tables
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge tracts in mathematics ;
|v 189
|
500 |
|
|
|a Title from publishers bibliographic system (viewed 09 May 2012).
|
504 |
|
|
|a Includes chapter notes and comments, bibliographical references (pages 307-318), list of symbols, and index.
|
505 |
0 |
|
|6 880-01
|a Cover; CAMBRIDGE TRACTS IN MATHEMATICS; GENERAL EDITORS; Title; Copyright; Contents; Preface; 1 What is nonlinear Perron-Frobenius theory?; 1.1 Classical Perron-Frobenius theory; 1.2 Cones and partial orderings; 1.3 Order-preserving maps; 1.4 Subhomogeneous maps; 1.5 Topical maps; 1.6 Integral-preserving maps; 2 Non-expansiveness and nonlinear Perron-Frobenius theory; 2.1 Hilbert's and Thompson's metrics; 2.2 Polyhedral cones; 2.3 Lorentz cones; 2.4 The cone of positive-semidefinite symmetric matrices; 2.5 Completeness; 2.6 Convexity and geodesics; 2.7 Topical maps and the sup-norm.
|
520 |
|
|
|a In the past several decades the classical Perron-Frobenius theory for nonnegative matrices has been extended to obtain remarkably precise and beautiful results for classes of nonlinear maps. This nonlinear Perron-Frobenius theory has found significant uses in computer science, mathematical biology, game theory and the study of dynamical systems. This is the first comprehensive and unified introduction to nonlinear Perron-Frobenius theory suitable for graduate students and researchers entering the field for the first time. It acquaints the reader with recent developments and provides a guide to challenging open problems. To enhance accessibility, the focus is on finite dimensional nonlinear Perron-Frobenius theory, but pointers are provided to infinite dimensional results. Prerequisites are little more than basic real analysis and topology.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Non-negative matrices.
|
650 |
|
0 |
|a Eigenvalues.
|
650 |
|
0 |
|a Eigenvectors.
|
650 |
|
0 |
|a Algebras, Linear.
|
650 |
|
6 |
|a Matrices non-négatives.
|
650 |
|
6 |
|a Valeurs propres.
|
650 |
|
6 |
|a Vecteurs.
|
650 |
|
6 |
|a Algèbre linéaire.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Linear.
|2 bisacsh
|
650 |
|
7 |
|a Álgebra lineal
|2 embne
|
650 |
0 |
7 |
|a Matrices no negativas
|2 embucm
|
650 |
|
7 |
|a Algebras, Linear
|2 fast
|
650 |
|
7 |
|a Eigenvalues
|2 fast
|
650 |
|
7 |
|a Eigenvectors
|2 fast
|
650 |
|
7 |
|a Non-negative matrices
|2 fast
|
700 |
1 |
|
|a Lemmens, Bas.
|
700 |
1 |
|
|a Nussbaum, Roger D.,
|d 1944-
|1 https://id.oclc.org/worldcat/entity/E39PBJrm49pkGv9JmP7hGHkMT3
|
758 |
|
|
|i has work:
|a Nonlinear Perron-Frobenius theory (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFWHQwxWdmJ9fRW4GXTrMd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9780521898812
|
830 |
|
0 |
|a Cambridge tracts in mathematics ;
|v 189.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=880642
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t What is nonlinear Perron--Frobenius theory--
|g 1.1.
|t Classical Perron--Frobenius theory --
|g 1.2.
|t Cones and partial orderings --
|g 1.3.
|t Order-preserving maps --
|g 1.4.
|t Subhomogeneous maps --
|g 1.5.
|t Topical maps --
|g 1.6.
|t Integral-preserving maps --
|g 2.
|t Non-expansiveness and nonlinear Perron--Frobenius theory --
|g 2.1.
|t Hilbert's and Thompson's metrics --
|g 2.2.
|t Polyhedral cones --
|g 2.3.
|t Lorentz cones --
|g 2.4.
|t cone of positive-semidefinite symmetric matrices --
|g 2.5.
|t Completeness --
|g 2.6.
|t Convexity and geodesics --
|g 2.7.
|t Topical maps and the sup-norm --
|g 2.8.
|t Integral-preserving maps and the l1-norm --
|g 3.
|t Dynamics of non-expansive maps --
|g 3.1.
|t Basic properties of non-expansive maps --
|g 3.2.
|t Fixed-point theorems for non-expansive maps --
|g 3.3.
|t Horofunctions and horoballs --
|g 3.4.
|t Denjoy--Wolff type theorem --
|g 3.5.
|t Non-expansive retractions --
|g 4.
|t Sup-norm non-expansive maps --
|g 4.1.
|t size of the ω-limit sets --
|g 4.2.
|t Periods of periodic points --
|g 4.3.
|t Iterates of topical maps --
|g 5.
|t Eigenvectors and eigenvalues of nonlinear cone maps --
|g 5.1.
|t Extensions of order-preserving maps --
|g 5.2.
|t cone spectrum --
|g 5.3.
|t cone spectral radius --
|g 5.4.
|t Eigenvectors corresponding to the cone spectral radius --
|g 5.5.
|t Continuity of the cone spectral radius --
|g 5.6.
|t Collatz--Wielandt formula --
|g 6.
|t Eigenvectors in the interior of the cone --
|g 6.1.
|t First principles --
|g 6.2.
|t Perturbation method --
|g 6.3.
|t Bounded invariant sets --
|g 6.4.
|t Uniqueness of the eigenvector --
|g 6.5.
|t Convergence to a unique eigenvector --
|g 6.6.
|t Means and their eigenvectors --
|g 7.
|t Applications to matrix scaling problems --
|g 7.1.
|t Matrix scaling: a fixed-point approach --
|g 7.2.
|t compatibility condition --
|g 7.3.
|t Special DAD theorems --
|g 7.4.
|t Doubly stochastic matrices: the classic case --
|g 7.5.
|t Scaling to row stochastic matrices --
|g 8.
|t Dynamics of subhomogeneous maps --
|g 8.1.
|t Iterations on polyhedral cones --
|g 8.2.
|t Periodic orbits in polyhedral cones --
|g 8.3.
|t Denjoy--Wolff theorems for cone maps --
|g 8.4.
|t Denjoy--Wolff theorem for polyhedral cones --
|g 9.
|t Dynamics of integral-preserving maps --
|g 9.1.
|t Lattice homomorphisms --
|g 9.2.
|t Periodic orbits of lower semi-lattice homomorphisms --
|g 9.3.
|t Periodic points and admissible arrays --
|g 9.4.
|t Computing periods of admissible arrays --
|g 9.5.
|t Maps on the whole space --
|g Appendix
|t A Birkhoff--Hopf theorem --
|g A.1.
|t Preliminaries --
|g A.2.
|t Almost Archimedean cones --
|g A.3.
|t Projective diameter --
|g A.4.
|t Birkhoff--Hopf theorem: reduction to two dimensions --
|g A.5.
|t Two-dimensional cones --
|g A.6.
|t Completion of the proof of the Birkhoff--Hopf theorem --
|g A.7.
|t Eigenvectors of cone-linear maps --
|g Appendix B
|t Classical Perron--Frobenius theory --
|g B.1.
|t general version of Perron's theorem --
|g B.2.
|t finite-dimensional Krein--Rutman theorem --
|g B.3.
|t Irreducible linear maps --
|g B.4.
|t peripheral spectrum.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH21939974
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 22835444
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL880642
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10574287
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 443672
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 371926
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9445063
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7636325
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 8923699
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9003528
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH28321254
|
994 |
|
|
|a 92
|b IZTAP
|