Cargando…

Development of elliptic functions according to Ramanujan /

This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Venkatachaliengar, K.
Autor Corporativo: World Scientific (Firm)
Otros Autores: Cooper, Shaun
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., Ã2012.
Colección:Monographs in number theory ; v. 6.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn794730630
003 OCoLC
005 20240329122006.0
006 m o d
007 cr buu|||uu|||
008 120120s2012 si a ob 001 0 eng d
040 |a WSPC  |b eng  |e pn  |c STF  |d OCLCF  |d OCLCO  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 877767895 
020 |a 9789814366465  |q (electronic bk.) 
020 |a 9814366463  |q (electronic bk.) 
020 |z 9814366455 
020 |z 9789814366458 
029 1 |a DEBBG  |b BV044161638 
029 1 |a DEBSZ  |b 405243650 
029 1 |a DEBSZ  |b 454899726 
035 |a (OCoLC)794730630  |z (OCoLC)877767895 
050 4 |a QA343 .V46 2012 
082 0 4 |a 515.983  |2 22 
049 |a UAMI 
100 1 |a Venkatachaliengar, K. 
245 1 0 |a Development of elliptic functions according to Ramanujan /  |c originally by K. Venkatachaliengar ; edited and revised by Shaun Cooper. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c Ã2012. 
300 |a 1 online resource (xv, 168 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Monographs in number theory,  |x 1793-8341 ;  |v v. 6 
504 |a Includes bibliographical references (pages 157-163) and index. 
505 0 |a 1. The Basic Identity. 1.1. Introduction. 1.2. The generalized Ramanujan identity. 1.3. The Weierstrass elliptic function. 1.4. Notes -- 2. The differential equations of P, Q and R. 2.1. Ramanujan's differential equations. 2.2. Ramanujan's [symbol] summation formula. 2.3. Ramanujan's transcendentals U[symbol] and V[symbol]. 2.4. The imaginary transformation and Dedekind's eta-function. 2.5. Notes -- 3. The Jordan-Kronecker Function. 3.1. The Jordan-Kronecker function. 3.2. The fundamental multiplicative identity. 3.3. Partitions. 3.4. The hypergeometric function [symbol](1/2, 1/2; 1; x): first method. 3.5. Notes -- 4. The Weierstrassian invariants. 4.1. Halphen's differential equations. 4.2. Jacobi's identities and sums of two and four squares. 4.3. Quadratic transformations. 4.4. The hypergeometric function [symbol](1/2, 1/2; 1; x): second method. 4.5. Notes -- 5. The Weierstrassian invariants, II. 5.1. Parameterizations of Eisenstein series. 5.2. Sums of eight squares and sums of eight triangular numbers. 5.3. Quadratic transformations. 5.4. The hypergeometric function [symbol](1/4, 3/4; 1; x). 5.5. The hypergeometric function [symbol](1/6, 5/6; 1; x). 5.6. The hypergeometric function [symbol](1/3, 2/3; 1; x). 5.7. Notes -- 6. Development of elliptic functions. 6.1. Introduction. 6.2. Jacobian elliptic functions. 6.3. Reciprocals and quotients. 6.4. Derivatives. 6.5. Addition formulas. 6.6. Notes -- 7. The modular function [symbol]. 7.1. Introduction. 7.2. Modular equations. 7.3. Modular equation of degree 3. 7.4. Modular equation of degree 5. 7.5. Modular equation of degree 7. 7.6. Modular equation of degree 11. 7.7. Modular equation of degree 23. 7.8. Notes. 
520 |a This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of real and complex analysis. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Elliptic functions. 
650 6 |a Fonctions elliptiques. 
650 7 |a Elliptic functions  |2 fast 
700 1 |a Cooper, Shaun. 
710 2 |a World Scientific (Firm) 
758 |i has work:  |a Development of elliptic functions according to Ramanujan (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFwP9fjffjx69jjfqqFD4q  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9814366455 
776 1 |z 9789814366458 
830 0 |a Monographs in number theory ;  |v v. 6. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=840716  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL840716 
994 |a 92  |b IZTAP