Cargando…

Geometric Realizations of Curvature.

A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are re...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gilkey, Peter B.
Otros Autores: Brozos-Vazquez, Miguel, Nikcevic, Stana
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Colección:Imperial College Press advanced texts in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn794328410
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120528s2012 si ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d ZCU  |d MERUC  |d NJR  |d OCLCQ  |d ICG  |d OCLCQ  |d TKN  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781848167421 
020 |a 1848167423 
020 |z 1848167415 
020 |z 9781848167414 
029 1 |a AU@  |b 000055813083 
029 1 |a DEBBG  |b BV044165395 
029 1 |a DEBSZ  |b 379327864 
029 1 |a DEBSZ  |b 45499754X 
029 1 |a AU@  |b 000073139130 
035 |a (OCoLC)794328410 
050 4 |a QA300 .G384 2012 
082 0 4 |a 516 
049 |a UAMI 
100 1 |a Gilkey, Peter B. 
245 1 0 |a Geometric Realizations of Curvature. 
260 |a Singapore :  |b World Scientific,  |c 2012. 
300 |a 1 online resource (263 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Icp Advanced Texts in Mathematics 
505 0 |6 880-01  |a Preface; Contents; 1. Introduction and Statement of Results; 1.1 Notational Conventions; 1.2 Representation Theory; 1.3 Affine Structures; 1.4 Mixed Structures; 1.5 Affine Kahler Structures; 1.6 Riemannian Structures; 1.7 Weyl Geometry I; 1.8 Almost Pseudo-Hermitian Geometry; 1.9 The Gray Identity; 1.10 Kahler Geometry in the Riemannian Setting I; 1.11 Curvature Kahler-Weyl Geometry; 1.12 The Covariant Derivative of the Kahler Form I; 1.13 Hyper-Hermitian Geometry; 2. Representation Theory; 2.1 Modules for a Group G; 2.2 Quadratic Invariants; 2.3 Weyl's Theory of Invariants. 
505 8 |a 2.4 Some Orthogonal Modules2.5 Some Unitary Modules; 2.6 Compact Lie Groups; 3. Connections, Curvature, and Differential Geometry; 3.1 Affine Connections; 3.2 Equiaffine Connections; 3.3 The Levi-Civita Connection; 3.4 Complex Geometry; 3.5 The Gray Identity; 3.6 Kahler Geometry in the Riemannian Setting II; 4. Real Affine Geometry; 4.1 Decomposition of and as Orthogonal Modules; 4.2 The Modules R, S2 0, and?2 in; 4.3 The Modules WO6, WO7, and WO8 in; 4.4 Decomposition of as a General Linear Module; 4.5 Geometric Realizability of Affine Curvature Operators. 
505 8 |a 4.6 Decomposition of as an Orthogonal Module5. Affine Kahler Geometry; 5.1 Affine Kahler Curvature Tensor Quadratic Invariants; 5.2 The Ricci Tensor for a Kahler Affine Connection; 5.3 Constructing Affine (Para)-Kahler Manifolds; 5.4 Affine Kahler Curvature Operators; 5.5 Affine Para-Kahler Curvature Operators; 5.6 Structure of as a GL Module; 6. Riemannian Geometry; 6.1 The Riemann Curvature Tensor; 6.2 The Weyl Conformal Curvature Tensor; 6.3 The Cauchy-Kovalevskaya Theorem; 6.4 Geometric Realizations of Riemann Curvature Tensors; 6.5 Weyl Geometry II; 7. Complex Riemannian Geometry. 
505 8 |a 7.1 The Decomposition of as Modules over7.2 The Submodules of Arising from the Ricci Tensors; 7.3 Para-Hermitian and Pseudo-Hermitian Geometry; 7.4 Almost Para-Hermitian and Almost Pseudo-Hermitian Geometry; 7.5 Kahler Geometry in the Riemannian Setting III; 7.6 Complex Weyl Geometry; 7.7 The Covariant Derivative of the Kahler Form II; Notational Conventions; Bibliography; Index. 
520 |a A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing ont. 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 239-247) and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometric analysis. 
650 0 |a Mathematics. 
650 0 |a Metric spaces. 
650 0 |a Operator theory. 
650 2 |a Mathematics 
650 6 |a Analyse géométrique. 
650 6 |a Mathématiques. 
650 6 |a Espaces métriques. 
650 6 |a Théorie des opérateurs. 
650 7 |a Geometric analysis  |2 fast 
650 7 |a Mathematics  |2 fast 
650 7 |a Metric spaces  |2 fast 
650 7 |a Operator theory  |2 fast 
700 1 |a Brozos-Vazquez, Miguel. 
700 1 |a Nikcevic, Stana. 
758 |i has work:  |a Geometric realizations of curvature (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFrMrhRgdkKFJCHX7CXVyd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Gilkey, Peter B.  |t Geometric Realizations of Curvature.  |d Singapore : World Scientific, ©2012  |z 9781848167414 
830 0 |a Imperial College Press advanced texts in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=919117  |z Texto completo 
880 0 |6 505-01/(S  |a Contents -- Preface -- 1. Introduction and Statement of Results -- 1.1 Notational Conventions -- 1.2 Representation Theory -- 1.3 Affine Structures -- 1.4 Mixed Structures -- 1.5 Affine Kahler Structures -- 1.6 Riemannian Structures -- 1.7 Weyl Geometry I -- 1.8 Almost Pseudo-Hermitian Geometry -- 1.9 The Gray Identity -- 1.10 Kahler Geometry in the Riemannian Setting I -- 1.11 Curvature Kahler-Weyl Geometry -- 1.12 The Covariant Derivative of the Kahler Form I -- 1.13 Hyper-Hermitian Geometry -- 2. Representation Theory -- 2.1 Modules for a Group G -- 2.2 Quadratic Invariants -- 2.3 Weyl's Theory of Invariants -- 2.4 Some Orthogonal Modules -- 2.5 Some Unitary Modules -- 2.6 Compact Lie Groups -- 3. Connections, Curvature, and Differential Geometry -- 3.1 Affine Connections -- 3.2 Equiaffine Connections -- 3.3 The Levi-Civita Connection -- 3.4 Complex Geometry -- 3.5 The Gray Identity -- 3.6 Kahler Geometry in the Riemannian Setting II -- 4. Real Affine Geometry -- 4.1 Decomposition of and as Orthogonal Modules -- 4.2 The Modules R, S2 0, and Λ2 in -- 4.3 The Modules WO6, WO7, and WO8 in -- 4.4 Decomposition of as a General Linear Module -- 4.5 Geometric Realizability of Affine Curvature Operators -- 4.6 Decomposition of as an Orthogonal Module -- 5. Affine Kahler Geometry -- 5.1 Affine Kahler Curvature Tensor Quadratic Invariants -- 5.2 The Ricci Tensor for a Kahler Affine Connection -- 5.3 Constructing Affine (Para)-Kahler Manifolds -- 5.4 Affine Kahler Curvature Operators -- 5.5 Affine Para-Kahler Curvature Operators -- 5.6 Structure of as a GL Module -- 6. Riemannian Geometry -- 6.1 The Riemann Curvature Tensor -- 6.2 The Weyl Conformal Curvature Tensor -- 6.3 The Cauchy-Kovalevskaya Theorem -- 6.4 Geometric Realizations of Riemann Curvature Tensors -- 6.5 Weyl Geometry II -- 7. Complex Riemannian Geometry. 
938 |a EBL - Ebook Library  |b EBLB  |n EBL919117 
994 |a 92  |b IZTAP