Cargando…

Bayesian Statistics and Marketing.

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rossi, Peter E. (Peter Eric), 1955-
Otros Autores: Allenby, Greg M. (Greg Martin), 1956-, McCulloch, Robert E. (Robert Edward)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, 2012.
Colección:Wiley series in probability and statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn793995918
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120521s2012 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d OCLCO  |d N$T  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d DEBBG  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d ICG  |d OCLCQ  |d UMR  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9780470863688  |q (electronic bk.) 
020 |a 0470863684  |q (electronic bk.) 
020 |a 128059232X 
020 |a 9781280592324 
020 |z 0470863684 
029 1 |a AU@  |b 000052894269 
029 1 |a DEBBG  |b BV041052121 
029 1 |a DEBBG  |b BV041908617 
029 1 |a DEBBG  |b BV044187989 
029 1 |a DEBSZ  |b 397155409 
029 1 |a DEBSZ  |b 425884317 
029 1 |a DEBSZ  |b 431052638 
029 1 |a DEBSZ  |b 443457182 
029 1 |a DEBSZ  |b 449264270 
035 |a (OCoLC)793995918 
050 4 |a HF5415.2 .R675 2005 
072 7 |a BUS  |x 078000  |2 bisacsh 
072 7 |a BUS  |x 043000  |2 bisacsh 
082 0 4 |a 658.8  |a 658.83015118 
049 |a UAMI 
100 1 |a Rossi, Peter E.  |q (Peter Eric),  |d 1955-  |1 https://id.oclc.org/worldcat/entity/E39PBJhRH9P66R3BcXdPfch4MP 
245 1 0 |a Bayesian Statistics and Marketing. 
260 |a Hoboken :  |b John Wiley & Sons,  |c 2012. 
300 |a 1 online resource (372 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley Series in Probability and Statistics 
505 0 |a Bayesian Statistics and Marketing; Contents; 1 Introduction; 1.1 A Basic Paradigm for Marketing Problems; 1.2 A Simple Example; 1.3 Benefits and Costs of the Bayesian Approach; 1.4 An Overview of Methodological Material and Case Studies; 1.5 Computing and This Book; Acknowledgements; 2 Bayesian Essentials; 2.0 Essential Concepts from Distribution Theory; 2.1 The Goal of Inference and Bayes' Theorem; 2.2 Conditioning and the Likelihood Principle; 2.3 Prediction and Bayes; 2.4 Summarizing the Posterior; 2.5 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators. 
505 8 |a 2.6 Identification and Bayesian Inference2.7 Conjugacy, Sufficiency, and Exponential Families; 2.8 Regression and Multivariate Analysis Examples; 2.9 Integration and Asymptotic Methods; 2.10 Importance Sampling; 2.11 Simulation Primer for Bayesian Problems; 2.12 Simulation from the Posterior of the Multivariate Regression Model; 3 Markov Chain Monte Carlo Methods; 3.1 Markov Chain Monte Carlo Methods; 3.2 A Simple Example: Bivariate Normal Gibbs Sampler; 3.3 Some Markov Chain Theory; 3.4 Gibbs Sampler; 3.5 Gibbs Sampler for the Seemingly Unrelated Regression Model. 
505 8 |a 3.6 Conditional Distributions and Directed Graphs3.7 Hierarchical Linear Models; 3.8 Data Augmentation and a Probit Example; 3.9 Mixtures of Normals; 3.10 Metropolis Algorithms; 3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model; 3.12 Hybrid Markov Chain Monte Carlo Methods; 3.13 Diagnostics; 4 Unit-Level Models and Discrete Demand; 4.1 Latent Variable Models; 4.2 Multinomial Probit Model; 4.3 Multivariate Probit Model; 4.4 Demand Theory and Models Involving Discrete Choice; 5 Hierarchical Models for Heterogeneous Units; 5.1 Heterogeneity and Priors. 
505 8 |a 5.2 Hierarchical Models5.3 Inference for Hierarchical Models; 5.4 A Hierarchical Multinomial Logit Example; 5.5 Using Mixtures of Normals; 5.6 Further Elaborations of the Normal Model of Heterogeneity; 5.7 Diagnostic Checks of the First-Stage Prior; 5.8 Findings and Influence on Marketing Practice; 6 Model Choice and Decision Theory; 6.1 Model Selection; 6.2 Bayes Factors in the Conjugate Setting; 6.3 Asymptotic Methods for Computing Bayes Factors; 6.4 Computing Bayes Factors Using Importance Sampling; 6.5 Bayes Factors Using MCMC Draws; 6.6 Bridge Sampling Methods. 
505 8 |a 6.7 Posterior Model Probabilities with Unidentified Parameters6.8 Chib's Method; 6.9 An Example of Bayes Factor Computation: Diagonal Multinomial Probit Models; 6.10 Marketing Decisions and Bayesian Decision Theory; 6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information; 7 Simultaneity; 7.1 A Bayesian Approach to Instrumental Variables; 7.2 Structural Models and Endogeneity/Simultaneity; 7.3 Nonrandom Marketing Mix Variables; Case Study 1: A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts; Background; Model; Data; Results. 
520 |a The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product p. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Marketing research  |x Mathematical models. 
650 0 |a Marketing  |x Mathematical models. 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Marketing  |x Recherche  |x Modèles mathématiques. 
650 6 |a Marketing  |x Modèles mathématiques. 
650 6 |a Théorie de la décision bayésienne. 
650 7 |a BUSINESS & ECONOMICS  |x Distribution.  |2 bisacsh 
650 7 |a BUSINESS & ECONOMICS  |x Marketing  |x General.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Marketing  |x Mathematical models  |2 fast 
650 7 |a Marketing research  |x Mathematical models  |2 fast 
700 1 |a Allenby, Greg M.  |q (Greg Martin),  |d 1956-  |1 https://id.oclc.org/worldcat/entity/E39PBJtMtVjktcPqCkDPQ33fbd 
700 1 |a McCulloch, Robert E.  |q (Robert Edward)  |1 https://id.oclc.org/worldcat/entity/E39PCjy4mCyFhbRWxckvTTDPBd 
758 |i has work:  |a Bayesian statistics and marketing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGq7pjb7Fgjypr38cJ4Brm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Rossi, Peter E.  |t Bayesian Statistics and Marketing.  |d Hoboken : John Wiley & Sons, ©2012  |z 9780470863671 
830 0 |a Wiley series in probability and statistics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=792774  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL792774 
938 |a EBSCOhost  |b EBSC  |n 507328 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 362215 
994 |a 92  |b IZTAP