Cargando…

Fusion systems in algebra and topology /

"A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was original...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aschbacher, Michael, 1944-
Otros Autores: Kessar, Radha, Oliver, Robert, 1949-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2011.
Colección:London Mathematical Society lecture note series ; 391.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn793899285
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 120427s2011 enka ob 001 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d E7B  |d OCLCO  |d IUL  |d DEBSZ  |d CUS  |d N$T  |d IDEBK  |d AUD  |d EBLCP  |d MHW  |d OCLCQ  |d OCLCF  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d COCUF  |d STF  |d CUY  |d MERUC  |d ZCU  |d ICG  |d K6U  |d U3W  |d LOA  |d VT2  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d DKC  |d OCLCQ  |d A6Q  |d G3B  |d OCLCQ  |d AU@  |d YDX  |d AJS  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d OCLCL 
016 7 |a 015804326  |2 Uk 
019 |a 776970606  |a 826452027  |a 836869198  |a 1042895125  |a 1043672616  |a 1059033535  |a 1066434386  |a 1076724569  |a 1081228682  |a 1097140784 
020 |a 1139003844  |q (electronic bk.) 
020 |a 9781139003841  |q (electronic bk.) 
020 |a 9781139099868 
020 |a 1139099868 
020 |a 9781139101844  |q (electronic bk.) 
020 |a 1139101846  |q (electronic bk.) 
020 |a 9781139101189 
020 |a 1139101188 
020 |z 9781107601000  |q (pbk.) 
020 |z 1107601002  |q (pbk.) 
029 1 |a AU@  |b 000062622369 
029 1 |a DEBSZ  |b 372598110 
029 1 |a DEBSZ  |b 380381117 
035 |a (OCoLC)793899285  |z (OCoLC)776970606  |z (OCoLC)826452027  |z (OCoLC)836869198  |z (OCoLC)1042895125  |z (OCoLC)1043672616  |z (OCoLC)1059033535  |z (OCoLC)1066434386  |z (OCoLC)1076724569  |z (OCoLC)1081228682  |z (OCoLC)1097140784 
050 4 |a QA182.5  |b .A74 2011eb 
072 7 |a MAT  |x 014000  |2 bisacsh 
082 0 4 |a 512/.2  |2 23 
084 |a MAT002000  |2 bisacsh 
049 |a UAMI 
100 1 |a Aschbacher, Michael,  |d 1944-  |1 https://id.oclc.org/worldcat/entity/E39PBJcGm66wBrRJJxDHyCgtKd 
245 1 0 |a Fusion systems in algebra and topology /  |c Michael Aschbacher, Radha Kessar, Bob Oliver. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (vi, 320 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a London mathematical society lecture note series ;  |v 391 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Introduction to fusion systems -- 2. The local theory of fusion systems -- 3. Fusion and homotopy theory -- 4. Fusion and representation theory -- Appendix A. Background facts about groups. 
520 |a "A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. The book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians"--  |c Provided by publisher 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Combinatorial group theory. 
650 0 |a Topological groups. 
650 0 |a Algebraic topology. 
650 6 |a Théorie combinatoire des groupes. 
650 6 |a Groupes topologiques. 
650 6 |a Topologie algébrique. 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Combinatorial group theory  |2 fast 
650 7 |a Topological groups  |2 fast 
650 7 |a p-Gruppe  |2 gnd 
650 7 |a Darstellungstheorie  |2 gnd 
650 7 |a Homotopietheorie  |2 gnd 
700 1 |a Kessar, Radha. 
700 1 |a Oliver, Robert,  |d 1949-  |1 https://id.oclc.org/worldcat/entity/E39PCjwxdQWcK8JPDmWvQBTMWC 
758 |i has work:  |a Fusion systems in algebra and topology (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfWdbCY6mvTtDwFxydc8y  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Aschbacher, Michael, 1944-  |t Fusion systems in algebra and topology.  |d Cambridge ; New York : Cambridge University Press, 2011  |z 9781107601000  |w (DLC) 2011019266  |w (OCoLC)727702110 
830 0 |a London Mathematical Society lecture note series ;  |v 391. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=802953  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH16077529 
938 |a EBL - Ebook Library  |b EBLB  |n EBL802953 
938 |a ebrary  |b EBRY  |n ebr10576305 
938 |a EBSCOhost  |b EBSC  |n 375975 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25154657 
938 |a YBP Library Services  |b YANK  |n 7113552 
938 |a YBP Library Services  |b YANK  |n 9009579 
938 |a YBP Library Services  |b YANK  |n 10410151 
938 |a YBP Library Services  |b YANK  |n 10375016 
994 |a 92  |b IZTAP