A garden of integrals /
The derivative and the integral are the fundamental notions of calculus. Though there is essentially only one derivative, there are a variety of integrals, developed over the years for a variety of purposes, and this book describes them. No other single source treats all of the integrals of Cauchy,...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Washington, DC :
Mathematical Association of America,
©2007.
|
Colección: | Dolciani mathematical expositions ;
no. 31. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Foreword
- An historical overview
- 1.1. Rearrangements
- 1.2. The lune of Hippocrates
- 1.3. Exdoxus and the method of exhaustion
- 1.4. Archimedes' method
- 1.5. Gottfried Leibniz and Isaac Newton
- 1.6. Augustin-Louis Cauchy
- 1.7. Bernhard Riemann
- 1.8. Thomas Stieltjes
- 1.9. Henri Lebesgue
- 1.10. The Lebesgue-Stieltjes integral
- 1.11. Ralph Henstock and Jaroslav Kurzweil
- 1.12. Norbert Wiener
- 1.13. Richard Feynman
- 1.14. References
- 2. The Cauchy integral
- 2.1. Exploring integration
- 2.2. Cauchy's integral
- 2.3. Recovering functions by integration
- 2.4. Recovering functions by differentiation
- 2.5. A convergence theorem
- 2.6. Joseph Fourier
- 2.7. P.G. Lejeune Dirichlet
- 2.8. Patrick Billingsley's example
- 2.9. Summary
- 2.10. References
- 3. The Riemann integral
- 3.1. Riemann's integral
- 3.2. Criteria for Riemann integrability
- 3.3. Cauchy and Darboux criteria for Riemann integrability
- 3.4. Weakening continuity
- 3.5. Monotonic functions are Riemann integrable
- 3.6. Lebesgue's criteria
- 3.7. Evaluating à la Riemann
- 3.8. Sequences of Riemann integrable functions
- 3.9. The Cantor set
- 3.10. A nowhere dense set of positive measure
- 3.11. Cantor functions
- 3.12. Volterra's example
- 3.13. Lengths of graphs and the Cantor function
- 3.14. Summary
- 3.15. References.
- 4. Riemann-Stieltjes integral
- 4.1. Generalizing the Riemann integral-- 4.2. Discontinuities
- 4.3. Existence of Riemann-Stieltjes integrals
- 4.4. Monotonicity of [null]
- 4.5. Euler's summation formula
- 4.6. Uniform convergence and R-S integration
- 4.7. References
- 5. Lebesgue measure
- 5.1. Lebesgue's idea
- 5.2. Measurable sets
- 5.3. Lebesgue measurable sets and Carathéodory
- 5.4. Sigma algebras
- 5.5. Borel sets
- 5.6. Approximating measurable sets
- 5.7. Measurable functions
- 5.8. More measureable functions
- 5.9. What does monotonicity tell us?
- 5.10. Lebesgue's differentiation theorem
- 5.11. References
- 6. The Lebesgue-Stieltjes integral
- 6.1. Introduction
- 6.2. Integrability : Riemann ensures Lebesgue
- 6.3. Convergence theorems
- 6.4. Fundamental theorems for the Lebesgue integral
- 6.5. Spaces
- 6.6. L²[-pi, pi] and Fourier series
- 6.7. Lebesgue measure in the plane and Fubini's theorem
- 6.8. Summary-- References
- 7. The Lebesgue-Stieltjes integral
- 7.1. L-S measures and monotone increasing functions
- 7.2. Carathéodory's measurability criterion
- 7.3. Avoiding complacency
- 7.4. L-S measures and nonnegative Lebesgue integrable functions
- 7.5. L-S measures and random variables
- 7.6. The Lebesgue-Stieltjes integral
- 7.7. A fundamental theorem for L-S integrals
- 7.8. References.
- 8. The Henstock-Kurzweil integral
- 8.1. The generalized Riemann integral
- 8.2. Gauges and [infinity]-fine partitions
- 8.3. H-K integrable functions
- 8.4. The Cauchy criterion for H-K integrability
- 8.5. Henstock's lemma
- 8.6. Convergence theorems for the H-K integral
- 8.7. Some properties of the H-K integral
- 8.8. The second fundamental theorem
- 8.9. Summary-- 8.10. References
- 9. The Wiener integral
- 9.1. Brownian motion
- 9.2. Construction of the Wiener measure
- 9.3. Wiener's theorem
- 9.4. Measurable functionals
- 9.5. The Wiener integral
- 9.6. Functionals dependent on a finite number of t values
- 9.7. Kac's theorem
- 9.8. References
- 10. Feynman integral
- 10.1. Introduction
- 10.2. Summing probability amplitudes
- 10.3. A simple example
- 10.4. The Fourier transform
- 10.5. The convolution product
- 10.6. The Schwartz space
- 10.7. Solving Schrödinger problem A
- 10.8. An abstract Cauchy problem
- 10.9. Solving in the Schwartz space
- 10.10. Solving Schrödinger problem B
- 10.11. References
- Index
- About the author.