Absorption and Drug Development.
This book explains how to examine a compound's pharmaceutical properties, emphasizing oral absorption, detailing different physicochemical methods and how to interpret results for analyzing drug candidates. Now in a new edition, this updated volume now includes more case examples, more entries...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
John Wiley & Sons,
2012.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- ABSORPTION AND DRUG DEVELOPMENT; CONTENTS; PREFACE; PREFACE TO THE FIRST EDITION; ABBREVIATIONS; NOMENCLATURE; COMMERCIAL TRADEMARKS; INTRODUCTION; 1.1 BULLDOZER SEARCHING FOR A NEEDLE IN A HAYSTACK?; 1.2 AS THE PARADIGM TURNS; 1.3 SCREEN FOR THE TARGET OR ADME FIRST?; 1.4 ADME AND MULTIMECHANISM SCREENS; 1.5 ADME AND THE MEDICINAL CHEMIST; 1.6 THE "ABSORPTION" IN ADME; 1.7 IT IS NOT JUST A NUMBER, IT IS A MULTIMECHANISM; REFERENCES; 2: TRANSPORT MODEL; 2.1 PERMEABILITY-SOLUBILITY-CHARGE STATE AND; 2.2 PROPERTIES OF THE GASTROINTESTINAL TRACT (GIT); 2.3 PH MICROCLIMATE; 2.4 INTRACELLULAR.
- 2.5 TIGHT JUNCTION COMPLEX2.6 STRUCTURE OF OCTANOL; 2.7 BIOPHARMACEUTICS CLASSIFICATION SYSTEM; REFERENCES; 3: pKa DETERMINATION; 3.1 CHARGE STATE AND THE pKa; 3.2 METHODS OF CHOICE FOR THE DETERMINATION OF THE pKa; 3.3 TITRATION WITH A GLASS-MEMBRANE; 3.4 EQUILIBRIUM EQUATIONS AND THE IONIZATION CONSTANT; 3.5 "PURE SOLVENT" ACTIVITY SCALE; 3.6 IONIC STRENGTH AND DEBYE-HÜCKEL/ DAVIES EQUATION; 3.7 "CONSTANT IONIC MEDIUM" ACTIVITY SCALE; 3.7.1 Constant Ionic Medium Activity Scale, fX?; 3.7.2 Example of the Constant Ionic Medium Activity Scale Treatment; 3.8 TEMPERATURE DEPENDENCE OF pKa VALUES.
- 3.8.1 Thermodynamics of Temperature Dependence of pKa3.8.2 Predicting pKa at 37°C from Measured Values at 25°C; 3.9 ELECTRODE CALIBRATION AND STANDARDIZATION; 3.9.1 Overview: From Millivolts to pH to pcH; 3.9.2 One-Buffer Operational Calibration of Electrode and Automatic Temperature Compensation; 3.9.3 Four-Parameter Procedure for Standardizing pH Electrode:; 3.9.3.1 Blank Titration; 3.9.3.2 Buffer-Capacity Enhanced Standardization Titrations; 3.9.4 Blank Titrations Assess the State of the Measurement System; 3.9.5 Frequency of Electrode Standardizations; 3.9.6 Effects of Ionic Strength on.
- 3.9.7 Effects of Temperature on3.10 BJERRUM PLOT: MOST USEFUL GRAPHICAL TOOL IN pKa ANALYSIS; 3.10.1 Derivation of the Bjerrum Function; 3.10.2 Diagnostic Uses of the Bjerrum Plots; 3.10.2.1 Confirming the Number of pKa and the Value of nH; 3.10.2.2 Correcting Residual Acidity/Basicity Error; 3.10.2.3 Correcting Sample Concentration Error; 3.10.2.4 Recognizing Electrode Calibration Errors; 3.10.2.5 Errors in Titrant Concentration; 3.10.2.6 Consequences of Errors in Ionic Strength; 3.10.2.7 Evidence of Precipitation; 3.10.2.8 pKa "Ghosts"; 3.10.2.9 Overlapping pKa Values.
- 3.10.3 More Than One Substance: Subtracting Effects of Dissolved Carbon Dioxide3.10.4 Case Examples; 3.10.5 Bjerrum's Lasting Contribution; 3.11 COSOLVENT METHODS FOR pKa DETERMINATION OF PRACTICALLY INSOLUBLE SUBSTANCES; 3.11.1 Traditional Cosolvent Extrapolation Procedure: psKa versus wt% Cosolvent; 3.11.2 Yasuda-Shedlovsky Cosolvent Extrapolation Procedure:psKa + log[H2O] versus 1/e; 3.11.3 Which Method Is Better to Use: Traditional or Yasuda-Shedlovsky?; 3.11.4 Precipitation in Mixed-Solvent Titration; 3.11.5 Electrode Standardization in Mixed Solvents.
- 3.11.6 Yasuda-Shedlovsky Ancillary Data.