Cargando…

Asymptotic behavior of generalized functions /

The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pilipović, Stevan
Otros Autores: Stanković, Bogoljub, 1924-, Vindas, Jasson
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, ©2012.
Colección:Series on analysis, applications and computation ; v. 5.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn785777959
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 120210s2012 si ob 001 0 eng d
010 |z  2012359710 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d YDXCP  |d OSU  |d OCLCO  |d DEBSZ  |d OCLCQ  |d N$T  |d IDEBK  |d CDX  |d OCLCF  |d EBLCP  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d ICG  |d VT2  |d CRU  |d INT  |d AU@  |d JBG  |d WYU  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d CEF  |d ADU  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
016 7 |a 015880484  |2 Uk 
019 |a 877768010  |a 961626668  |a 962604969  |a 974663531  |a 974746267  |a 988458758  |a 988507109  |a 991962464  |a 1037759015  |a 1038597923  |a 1043634374  |a 1058116455  |a 1100829920  |a 1153540413 
020 |a 9789814366854  |q (electronic bk.) 
020 |a 9814366854  |q (electronic bk.) 
020 |z 9814366846 
020 |z 9789814366847 
029 1 |a DEBBG  |b BV043154231 
029 1 |a DEBBG  |b BV044162025 
029 1 |a DEBSZ  |b 372895689 
029 1 |a DEBSZ  |b 405243774 
029 1 |a DEBSZ  |b 421284463 
029 1 |a DEBSZ  |b 454997183 
029 1 |a AU@  |b 000074603423 
035 |a (OCoLC)785777959  |z (OCoLC)877768010  |z (OCoLC)961626668  |z (OCoLC)962604969  |z (OCoLC)974663531  |z (OCoLC)974746267  |z (OCoLC)988458758  |z (OCoLC)988507109  |z (OCoLC)991962464  |z (OCoLC)1037759015  |z (OCoLC)1038597923  |z (OCoLC)1043634374  |z (OCoLC)1058116455  |z (OCoLC)1100829920  |z (OCoLC)1153540413 
050 4 |a QA297  |b .P55 2012eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.23  |2 22 
049 |a UAMI 
100 1 |a Pilipović, Stevan. 
245 1 0 |a Asymptotic behavior of generalized functions /  |c Steven Pilipović, Bogoljub Stanković, Jasson Vindas. 
260 |a Singapore :  |b World Scientific,  |c ©2012. 
300 |a 1 online resource (xiii, 294 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Series on analysis, applications and computation,  |x 1793-4702 ;  |v v. 5 
504 |a Includes bibliographical references (pages 283-292) and index. 
505 0 |6 880-01  |a Preface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions -- Comparisons with the S-asymptotics of distributions. 
505 8 |a 1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone. 
505 8 |a 2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions. 
505 8 |a 2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0,); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions. 
505 8 |a 3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type. 
520 |a The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach - of Estrada, Kanwal and Vindas - is related. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Asymptotic expansions. 
650 4 |a Asymptotic expansions. 
650 4 |a Theory of distributions (Functional analysis) 
650 6 |a Développements asymptotiques. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Asymptotic expansions  |2 fast 
700 1 |a Stanković, Bogoljub,  |d 1924-  |1 https://id.oclc.org/worldcat/entity/E39PBJwX9YPKrvgfpJxmFCCPcP 
700 1 |a Vindas, Jasson. 
776 0 8 |i Print version:  |a Pilipović, Stevan.  |t Asympototic behavior of generalized functions.  |d Singapore : World Scientific, ©2012  |w (DLC) 2012359710 
830 0 |a Series on analysis, applications and computation ;  |v v. 5.  |x 1793-4702 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=846133  |z Texto completo 
880 0 |6 505-01/(S  |a Machine generated contents note: I. Asymptotic Behavior of Generalized Functions -- 0. Preliminaries -- 1.S-asymptotics in F'g -- 1.1. Definition -- 1.2. Characterization of comparison functions and limits -- 1.3. Equivalent definitions of the S-asymptotics in F' -- 1.4. Basic properties of the S-asymptotics -- 1.5.S-asymptotic behavior of some special classes of generalized functions -- 1.6.S-asymptotics and the asymptotics of a function -- 1.7. Characterization of the support of T ε F'o -- 1.8. Characterization of some generalized function spaces -- 1.9. Structural theorems for S-asymptotics in F' -- 1.10.S-asymptotic expansions in F'g -- 1.11.S-asymptotics in subspaces of distributions -- 1.12. Generalized S-asymptotics -- 2. Quasi-asymptotics in F' -- 2.1. Definition of quasi-asymptotics at infinity over a cone -- 2.2. Basic properties of quasi-asymptotics over a cone -- 2.3. Quasi-asymptotic behavior at infinity of some generalized functions. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26422258 
938 |a Coutts Information Services  |b COUT  |n 25731887 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL846133 
938 |a ebrary  |b EBRY  |n ebr10529360 
938 |a EBSCOhost  |b EBSC  |n 521271 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25731887 
938 |a YBP Library Services  |b YANK  |n 7150507 
994 |a 92  |b IZTAP