Cargando…

Galois theory /

Praise for the First Edition " ... will certainly fascinate anyone interested in abstract algebra: a remarkable book!"--Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cox, David A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, ©2012.
Edición:2nd ed.
Colección:Pure and applied mathematics (John Wiley & Sons : Unnumbered)
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn784952441
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 120409s2012 njua ob 001 0 eng d
010 |a  2011039044 
040 |a N$T  |b eng  |e pn  |c N$T  |d CUS  |d YDXCP  |d DG1  |d CDX  |d COO  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d IUL  |d OCLCF  |d OCLCQ  |d EBLCP  |d CN3GA  |d OCLCQ  |d AZK  |d DG1  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d ZEM  |d U3W  |d GRG  |d OCLCQ  |d STF  |d WRM  |d COCUF  |d ICG  |d INT  |d NRAMU  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d OCLCQ  |d UKCRE  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d VLB  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 784883586  |a 794619794  |a 961599377  |a 962604337  |a 988505820  |a 988537875  |a 991961848  |a 1014214906  |a 1037735474  |a 1038582858  |a 1045531865  |a 1058748046  |a 1066522803  |a 1081232069  |a 1153471297  |a 1228601159 
020 |a 9781118218457  |q (electronic bk.) 
020 |a 1118218450  |q (electronic bk.) 
020 |a 9781118218426  |q (electronic bk.) 
020 |a 1118218426  |q (electronic bk.) 
020 |z 9781118072059  |q (cloth) 
020 |z 1118072057  |q (cloth) 
024 8 |a 9786613618191 
029 1 |a AU@  |b 000049117486 
029 1 |a CHNEW  |b 000939636 
029 1 |a CHVBK  |b 480199280 
029 1 |a DEBBG  |b BV040883843 
029 1 |a DEBBG  |b BV044159675 
029 1 |a DEBSZ  |b 372710913 
029 1 |a DEBSZ  |b 397177402 
029 1 |a DEBSZ  |b 485018292 
029 1 |a NZ1  |b 14690905 
029 1 |a NZ1  |b 15350976 
035 |a (OCoLC)784952441  |z (OCoLC)784883586  |z (OCoLC)794619794  |z (OCoLC)961599377  |z (OCoLC)962604337  |z (OCoLC)988505820  |z (OCoLC)988537875  |z (OCoLC)991961848  |z (OCoLC)1014214906  |z (OCoLC)1037735474  |z (OCoLC)1038582858  |z (OCoLC)1045531865  |z (OCoLC)1058748046  |z (OCoLC)1066522803  |z (OCoLC)1081232069  |z (OCoLC)1153471297  |z (OCoLC)1228601159 
037 |a 361819  |b MIL 
050 4 |a QA214  |b .C69 2012eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.32  |2 23 
049 |a UAMI 
100 1 |a Cox, David A. 
245 1 0 |a Galois theory /  |c David A. Cox. 
250 |a 2nd ed. 
260 |a Hoboken, NJ :  |b John Wiley & Sons,  |c ©2012. 
300 |a 1 online resource (xxviii, 570 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
490 1 |a Pure and applied mathematics 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Galois Theory; CONTENTS; Preface to the First Edition; Preface to the Second Edition; Notation; 1 Basic Notation; 2 Chapter-by-Chapter Notation; PART I POLYNOMIALS; 1 Cubic Equations; 1.1 Cardan's Formulas; Historical Notes; 1.2 Permutations of the Roots; A Permutations; B The Discriminant; C Symmetric Polynomials; Mathematical Notes; Historical Notes; 1.3 Cubic Equations over the Real Numbers; A The Number of Real Roots; B Trigonometric Solution of the Cubic; Historical Notes; References; 2 Symmetric Polynomials; 2.1 Polynomials of Several Variables; A The Polynomial Ring in n Variables. 
505 8 |a B The Elementary Symmetric Polynomials Mathematical Notes; 2.2 Symmetric Polynomials; A The Fundamental Theorem; B The Roots of a Polynomial; C Uniqueness; Mathematical Notes; Historical Notes; 2.3 Computing with Symmetric Polynomials (Optional); A Using Mathematica; B Using Maple; 2.4 The Discriminant; Mathematical Notes; Historical Notes; References; 3 Roots of Polynomials; 3.1 The Existence of Roots; Mathematical Notes; Historical Notes; 3.2 The Fundamental Theorem of Algebra; Mathematical Notes; Historical Notes; References; PART II FIELDS; 4 Extension Fields. 
505 8 |a 4.1 Elements of Extension Fields A Minimal Polynomials; B Adjoining Elements; Mathematical Notes; Historical Notes; 4.2 Irreducible Polynomials; A Using Maple and Mathematica; B Algorithms for Factoring; C The Schönemann-Eisenstein Criterion; D Prime Radicals; Historical Notes; 4.3 The Degree of an Extension; A Finite Extensions; B The Tower Theorem; Mathematical Notes; Historical Notes; 4.4 Algebraic Extensions; Mathematical Notes; References; 5 Normal and Separable Extensions; 5.1 Splitting Fields; A Definition and Examples; B Uniqueness; 5.2 Normal Extensions; Historical Notes. 
505 8 |a 5.3 Separable Extensions A Fields of Characteristic 0; B Fields of Characteristic p; C Computations; Mathematical Notes; 5.4 Theorem of the Primitive Element; Mathematical Notes; Historical Notes; References; 6 The Galois Group; 6.1 Definition of the Galois Group; Historical Notes; 6.2 Galois Groups of Splitting Fields; 6.3 Permutations of the Roots; Mathematical Notes; Historical Notes; 6.4 Examples of Galois Groups; A The pth Roots of 2; B The Universal Extension; C A Polynomial of Degree 5; Mathematical Notes; Historical Notes; 6.5 Abelian Equations (Optional); Historical Notes; References. 
505 8 |a 7 The Galois Correspondence7.1 Galois Extensions; A Splitting Fields of Separable Polynomials; B Finite Separable Extensions; C Galois Closures; Historical Notes; 7.2 Normal Subgroups and Normal Extensions; A Conjugate Fields; B Normal Subgroups; Mathematical Notes; Historical Notes; 7.3 The Fundamental Theorem of Galois Theory; 7.4 First Applications; A The Discriminant; B The Universal Extension; C The Inverse Galois Problem; Historical Notes; 7.5 Automorphisms and Geometry (Optional); A Groups of Automorphisms; B Function Fields in One Variable; C Linear Fractional Transformations. 
520 |a Praise for the First Edition " ... will certainly fascinate anyone interested in abstract algebra: a remarkable book!"--Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel's theory of Abelian equations, casus irreducibili, and the Galois. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Galois theory. 
650 6 |a Théorie de Galois. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Galois theory  |2 fast 
758 |i has work:  |a Galois theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGj6XkVrdYBFQc6T7yPTVC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Cox, David A.  |t Galois theory.  |b 2nd ed.  |d Hoboken, N.J. : John Wiley & Sons, ©2012  |z 9781118072059  |w (DLC) 2011039044  |w (OCoLC)755640849 
830 0 |a Pure and applied mathematics (John Wiley & Sons : Unnumbered) 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=817908  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 22302714 
938 |a EBL - Ebook Library  |b EBLB  |n EBL817908 
938 |a ebrary  |b EBRY  |n ebr10560585 
938 |a EBSCOhost  |b EBSC  |n 444554 
938 |a YBP Library Services  |b YANK  |n 7578085 
938 |a YBP Library Services  |b YANK  |n 7292965 
994 |a 92  |b IZTAP