Machine learning in non-stationary environments : introduction to covariate shift adaptation /
This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variet...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
MIT Press,
©2012.
|
Colección: | Adaptive computation and machine learning.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This volume focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) changes but the conditional distributions of outputs (answers) is unchanged, and presents machine learning theory algorithms, and applications to overcome this variety of non-stationarity. |
---|---|
Descripción Física: | 1 online resource (xiv, 261 pages) : illustrations |
Bibliografía: | Includes bibliographical references and index. |
ISBN: | 9780262301220 0262301229 1280499222 9781280499227 |