Cargando…

High Performance Control of AC Drives with Matlab /

A comprehensive guide to understanding AC machines with exhaustive simulation models to practice design and controlNearly seventy percent of the electricity generated worldwide is used by electrical motors. Worldwide, huge research efforts are being made to develop commercially viable three- and mul...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Abu-Rub, Haithem
Otros Autores: Iqbal, Atif, Guzinski, J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, 2012.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • High Performance Control of AC Drives with Matlab/simulink Models; Contents; Acknowledgment; Biographies; Preface; 1 Introduction to High Performance Drives; 1.1 Preliminary Remarks; 1.2 General Overview of High Performance Drives; 1.3 Challenges and Requirements for Electric Drives for Industrial Applications; 1.3.1 Power Quality and LC Resonance Suppression; 1.3.2 Inverter Switching Frequency; 1.3.3 Motor Side Challenges; 1.3.4 High dv/dt and Wave Reflection; 1.3.5 Use of Inverter Output Filters; 1.4 Organization of the Book; References; 2 Mathematical and Simulation Models of AC Machines.
  • 2.1 Preliminary Remarks2.2 DC Motors; 2.2.1 Separately Excited DC Motor Control; 2.2.2 Series DC Motor Control; 2.3 Squirrel Cage Induction Motor; 2.3.1 Space Vector Representation; 2.3.2 Clarke Transformation (ABC to aß); 2.3.3 Park Transformation (aß to dq); 2.3.4 Per Unit Model of Induction Motor; 2.3.5 Double Fed Induction Generator (DFIG); 2.4 Mathematical Model of Permanent Magnet Synchronous Motor; 2.4.1 Motor Model in dq Rotating Frame; 2.4.2 Example of Motor Parameters for Simulation; 2.4.3 PMSM Model in Per Unit System; 2.4.4 PMSM Model in a-ß (x-y)-Axis; 2.5 Problems; References.
  • 3 Pulse Width Modulation of Power Electronic DC-AC Converter3.1 Preliminary Remarks; 3.2 Classification of PWM Schemes for Voltage Source Inverters; 3.3 Pulse Width Modulated Inverters; 3.3.1 Single-Phase Half-bridge Inverters; 3.3.2 Single-Phase Full-bridge Inverters; 3.4 Three-phase PWM Voltage Source Inverter; 3.4.1 Carrier-based Sinusoidal PWM; 3.4.2 Third-harmonic Injection Carrier-based PWM; 3.4.3 Matlab/Simulink Model for Third Harmonic Injection PWM; 3.4.4 Carrier-based PWM with Offset Addition; 3.4.5 Space Vector PWM; 3.4.6 Discontinuous Space Vector PWM.
  • 3.4.7 Matlab/Simulink Model for Space Vector PWM3.4.8 Space Vector PWM in Over-modulation Region; 3.4.9 Matlab/Simulink Model to Implement Space Vector PWM in Over-modulation Regions; 3.4.10 Harmonic Analysis; 3.4.11 Artificial Neural Network-based PWM; 3.4.12 Matlab/Simulink Model of Implementing ANN-based SVPWM; 3.5 Relationship between Carrier-based PWM and SVPWM; 3.5.1 Modulating Signals and Space Vectors; 3.5.2 Relationship between Line-to-line Voltages and Space Vectors; 3.5.3 Modulating Signals and Space Vector Sectors; 3.6 Multi-level Inverters.
  • 3.6.1 Diode Clamped Multi-level Inverters3.6.2 Flying Capacitor Type Multi-level Inverter; 3.6.3 Cascaded H-Bridge Multi-level Inverter; 3.7 Impedance Source or Z-source Inverter; 3.7.1 Circuit Analysis; 3.7.2 Carrier-based Simple Boost PWM Control of a Z-source Inverter; 3.7.3 Carrier-based Maximum Boost PWM Control of a Z-source Inverter; 3.7.4 Matlab/Simulink Model of Z-source Inverter; 3.8 Quasi Impedance Source or qZSI Inverter; 3.8.1 Matlab/Simulink Model of qZ-source Inverter; 3.9 Dead Time Effect in a Multi-phase Inverter; 3.10 Summary; 3.11 Problems; References.