Cargando…

Bayesian Analysis of Stochastic Process Models.

This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introduction...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Insua, David
Otros Autores: Ruggeri, Fabrizio, Wiper, Mike
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn784885419
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120409s2012 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d CDX  |d YDXCP  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCO  |d DEBSZ  |d OCLCQ  |d RECBK  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d RDF  |d OCLCQ  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 872647435 
020 |a 9780470975923 
020 |a 047097592X 
020 |a 9781118304037  |q (electronic bk.) 
020 |a 1118304039  |q (electronic bk.) 
028 0 1 |a EB00063303  |b Recorded Books 
029 1 |a AU@  |b 000052908081 
029 1 |a DEBBG  |b BV044188381 
029 1 |a DEBSZ  |b 397262051 
029 1 |a DEBSZ  |b 422916366 
029 1 |a DEBSZ  |b 431109583 
029 1 |a DEBSZ  |b 449291731 
029 1 |a AU@  |b 000067094624 
035 |a (OCoLC)784885419  |z (OCoLC)872647435 
050 4 |a QA279.5 
082 0 4 |a 519.5/42  |2 23 
084 |a MAT029010  |2 bisacsh 
049 |a UAMI 
100 1 |a Insua, David. 
245 1 0 |a Bayesian Analysis of Stochastic Process Models. 
260 |a Hoboken :  |b John Wiley & Sons,  |c 2012. 
300 |a 1 online resource (316 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Bayesian Analysis of Stochastic Process Models; Contents; Preface; PART ONE BASIC CONCEPTS AND TOOLS; 1 Stochastic processes; 1.1 Introduction; 1.2 Key concepts in stochastic processes; 1.3 Main classes of stochastic processes; 1.3.1 Markovian processes; 1.3.2 Poisson process; 1.3.3 Gaussian processes; 1.3.4 Brownian motion; 1.3.5 Diffusion processes; 1.4 Inference, prediction, and decision-making; 1.5 Discussion; References; 2 Bayesian analysis; 2.1 Introduction; 2.2 Bayesian statistics; 2.2.1 Parameter estimation; 2.2.2 Hypothesis testing; 2.2.3 Prediction. 
505 8 |a 2.2.4 Sensitivity analysis and objective Bayesian methods2.3 Bayesian decision analysis; 2.4 Bayesian computation; 2.4.1 Computational Bayesian statistics; 2.4.2 Computational Bayesian decision analysis; 2.5 Discussion; References; PART TWO MODELS; 3 Discrete time Markov chains and extensions; 3.1 Introduction; 3.2 Important Markov chain models; 3.2.1 Reversible chains; 3.2.2 Higher order chains and mixtures; 3.2.3 Discrete time Markov processes with continuous state space; 3.2.4 Branching processes; 3.2.5 Hidden Markov models; 3.3 Inference for first-order, time homogeneous, Markov chains. 
505 8 |a 3.3.1 Advantages of the Bayesian approach3.3.2 Conjugate prior distribution and modifications; 3.3.3 Forecasting short-term behavior; 3.3.4 Forecasting stationary behavior; 3.3.5 Model comparison; 3.3.6 Unknown initial state; 3.3.7 Partially observed data; 3.4 Special topics; 3.4.1 Reversible Markov chains; 3.4.2 Higher order chains and mixtures of Markov chains; 3.4.3 AR processes and other continuous state space processes; 3.4.4 Branching processes; 3.4.5 Hidden Markov models; 3.4.6 Markov chains with covariate information and nonhomogeneous Markov chains. 
505 8 |a 3.5 Case study: Wind directions at Gijón3.5.1 Modeling the time series of wind directions; 3.5.2 Results; 3.6 Markov decision processes; 3.7 Discussion; References; 4 Continuous time Markov chains and extensions; 4.1 Introduction; 4.2 Basic setup and results; 4.3 Inference and prediction for CTMCs; 4.3.1 Inference for the chain parameters; 4.3.2 Forecasting short-term behavior; 4.3.3 Forecasting long-term behavior; 4.3.4 Predicting times between transitions; 4.4 Case study: Hardware availability through CTMCs; 4.5 Semi-Markovian processes. 
505 8 |a 4.6 Decision-making with semi-Markovian decision processes4.7 Discussion; References; 5 Poisson processes and extensions; 5.1 Introduction; 5.2 Basics on Poisson processes; 5.2.1 Definitions and basic results; 5.2.2 Arrival and interarrival times; 5.2.3 Some relevant results; 5.3 Homogeneous Poisson processes; 5.3.1 Inference on homogeneous Poisson processes; 5.4 Nonhomogeneous Poisson processes; 5.4.1 Intensity functions; 5.4.2 Inference for nonhomogeneous Poisson processes; 5.4.3 Change points in NHPPs; 5.5 Compound Poisson processes; 5.6 Further extensions of Poisson processes. 
500 |a 5.6.1 Modulated Poisson process. 
520 |a This book provides analysis of stochastic processes from a Bayesian perspective with coverage of the main classes of stochastic processing, including modeling, computational, inference, prediction, decision-making and important applied models based on stochastic processes. In offers an introduction of MCMC and other statistical computing machinery that have pushed forward advances in Bayesian methodology. Addressing the growing interest for Bayesian analysis of more complex models, based on stochastic processes, this book aims to unite scattered information into one comprehensive and reliable. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Stochastic processes. 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Processus stochastiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Bayesian Analysis.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Stochastic processes  |2 fast 
700 1 |a Ruggeri, Fabrizio. 
700 1 |a Wiper, Mike. 
758 |i has work:  |a Bayesian analysis of stochastic process models (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvWtwWPQ9hwrXd88yQVP3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Insua, David.  |t Bayesian Analysis of Stochastic Process Models.  |d Hoboken : John Wiley & Sons, ©2012  |z 9780470744536 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=877779  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 11452074 
938 |a EBL - Ebook Library  |b EBLB  |n EBL877779 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 361976 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00063303 
938 |a YBP Library Services  |b YANK  |n 7644025 
994 |a 92  |b IZTAP