Cargando…

Probability, Random Processes, and Statistical Analysis : Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.

Covers the fundamental topics together with advanced theories, including the EM algorithm, hidden Markov models, and queueing and loss systems.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kobayashi, Hisashi
Otros Autores: Mark, Brian L., Turin, William
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn782877024
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120402s2011 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OL$  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d CUY  |d MERUC  |d ZCU  |d ICG  |d OCLCQ  |d TKN  |d DKC  |d AU@  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 853654269 
020 |a 9781139188005 
020 |a 1139188003 
020 |a 9780511977770  |q (electronic book) 
020 |a 0511977778  |q (electronic book) 
029 1 |a AU@  |b 000052898164 
029 1 |a DEBSZ  |b 379324970 
029 1 |a DEBSZ  |b 445573139 
029 1 |a DKDLA  |b 820120-katalog:999927881405765 
035 |a (OCoLC)782877024  |z (OCoLC)853654269 
050 4 |a QA274.2 .K63 2012 
082 0 4 |a 519.2 
049 |a UAMI 
100 1 |a Kobayashi, Hisashi. 
245 1 0 |a Probability, Random Processes, and Statistical Analysis :  |b Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (814 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Probability, Random Processes, and Statistical Analysis; Title; Copyright; Contents; Abbreviations and Acronyms; Preface; Organization of the book; Suggested course plans; Supplementary materials; Solution manuals; Lecture slides; Matlab exercises and programs; Acknowledgments; 1 Introduction; 1.1 Why study probability, random processes, and statistical analysis?; 1.1.1 Communications, information, and control systems; 1.1.2 Signal processing; 1.1.3 Machine learning; 1.1.4 Biostatistics, bioinformatics, and related fields; 1.1.5 Econometrics and mathematical finance. 
505 8 |a 1.1.6 Queueing and loss systems1.1.7 Other application domains; 1.2 History and overview; 1.2.1 Classical probability theory; 1.2.2 Modern probability theory; 1.2.3 Random processes; 1.2.3.1 Poisson process to Markov process; 1.2.3.2 Brownian motion to Itô process; 1.2.4 Statistical analysis and inference; 1.2.4.1 Frequentist statistics versus Bayesian statistics; 1.3 Discussion and further reading; Part I Probability, random variables, and statistics; 2 Probability; 2.1 Randomness in the real world; 2.1.1 Repeated experiments and statistical regularity. 
505 8 |a 2.1.2 Random experiments and relative frequencies2.2 Axioms of probability; 2.2.1 Sample space; 2.2.2 Event; 2.2.3 Probability measure; 2.2.4 Properties of probability measure; 2.3 Bernoulli trials and Bernoulli's theorem; 2.4 Conditional probability, Bayes' theorem, and statistical independence; 2.4.1 Joint probability and conditional probability; 2.4.2 Bayes' theorem; 2.4.2.1 Frequentist probabilities and Bayesian probabilities; 2.4.3 Statistical independence of events; 2.5 Summary of Chapter 2; 2.6 Discussion and further reading; 2.7 Problems; 3 Discrete random variables. 
505 8 |a 3.1 Random variables3.1.1 Distribution function; 3.1.2 Two random variables and joint distribution function; 3.2 Discrete random variables and probability distributions; 3.2.1 Joint and conditional probability distributions; 3.2.2 Moments, central moments, and variance; 3.2.3 Covariance and correlation coefficient; 3.3 Important probability distributions; 3.3.1 Bernoulli distribution and binomial distribution; 3.3.2 Geometric distribution; 3.3.3 Poisson distribution; 3.3.4 Negative binomial (or Pascal) distribution; 3.3.4.1 Shifted negative binomial distribution. 
505 8 |a 3.3.5 Zipf's law and zeta distribution3.3.5.1 Euler and Riemann zeta functions; 3.4 Summary of Chapter 3; 3.5 Discussion and further reading; 3.6 Problems; 4 Continuous random variables; 4.1 Continuous random variables; 4.1.1 Distribution function and probability density function; 4.1.2 Expectation, moments, central moments, and variance; 4.2 Important continuous random variables and their distributions; 4.2.1 Uniform distribution; 4.2.2 Exponential distribution; 4.2.3 Gamma distribution; 4.2.4 Normal (or Gaussian) distribution; 4.2.4.1 Moments of the unit normal distribution. 
505 8 |a 4.2.4.2 The normal approximation to the binomial distribution and the DeMoivre-Laplace limit theorem4. 
520 |a Covers the fundamental topics together with advanced theories, including the EM algorithm, hidden Markov models, and queueing and loss systems. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Stochastic analysis. 
650 6 |a Analyse stochastique. 
650 7 |a Stochastic analysis  |2 fast 
700 1 |a Mark, Brian L. 
700 1 |a Turin, William. 
758 |i has work:  |a Probability, random processes, and statistical analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFXtJTkVg73mwRPGd9vDVP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kobayashi, Hisashi.  |t Probability, Random Processes, and Statistical Analysis : Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance.  |d Cambridge : Cambridge University Press, ©2011  |z 9780521895446 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=807304  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL807304 
994 |a 92  |b IZTAP