|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn782857899 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120402s2011 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d AUD
|d WRJ
|d COO
|d CDX
|d OCLCO
|d IDEBK
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d YDXCP
|d OCLCQ
|d CNCGM
|d Z5A
|d UAB
|d OCLCQ
|d OCLCA
|d OCLCQ
|d INT
|d MERUC
|d ZCU
|d ICG
|d OCLCQ
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d S9I
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 776967759
|a 798796700
|
020 |
|
|
|a 9781139009324
|
020 |
|
|
|a 113900932X
|
020 |
|
|
|a 9780511975837
|q (ebook)
|
020 |
|
|
|a 051197583X
|q (ebook)
|
020 |
|
|
|a 9780521876285
|q (hardback)
|
020 |
|
|
|a 0521876281
|q (hardback)
|
029 |
1 |
|
|a AU@
|b 000052895848
|
029 |
1 |
|
|a DEBSZ
|b 379318571
|
029 |
1 |
|
|a DEBSZ
|b 445569972
|
035 |
|
|
|a (OCoLC)782857899
|z (OCoLC)776967759
|z (OCoLC)798796700
|
050 |
|
4 |
|a QA402.5.F86 2011
|
072 |
|
7 |
|a TJFM
|2 bicssc
|
082 |
0 |
4 |
|a 518.1
|a 519.7
|
084 |
|
|
|a MAT017000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Challa, Subhash.
|
245 |
1 |
0 |
|a Fundamentals of Object Tracking.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (390 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover; FUNDAMENTALS OF OBJECT TRACKING; Title; Copyright; Contents; Preface; 1: Introduction to object tracking; 1.1 Overview of object tracking problems; 1.1.1 Air space monitoring; 1.1.2 Video surveillance; 1.1.3 Weather monitoring; 1.1.4 Cell biology; 1.2 Bayesian reasoning with application to object tracking; 1.2.1 Bayes' theorem; 1.2.2 Application to object tracking; 1.3 Recursive Bayesian solution for object tracking; 1.3.1 The generalized object dynamics equation; 1.3.2 The generalized sensor measurement equation; 1.3.3 Generalized object state prediction and conditional densities.
|
505 |
8 |
|
|a 1.3.4 Generalized object state prediction and update1.3.5 Generalized object state filtering; 1.3.6 Generalized object state estimates; 1.4 Summary; 2: Filtering theory and non-maneuvering object tracking; 2.1 The optimal Bayesian filter; 2.1.1 Object dynamics and sensor measurement equations; 2.1.2 The optimal non-maneuvering object tracking filter recursion; 2.2 The Kalman filter; 2.2.1 Derivation of the Kalman filter; 2.2.2 The Kalman filter equations; 2.3 The extended Kalman filter; 2.3.1 Linear filter approximations; 2.3.2 The extended Kalman filter equations.
|
505 |
8 |
|
|a 2.4 The unscented Kalman filter2.4.1 The unscented transformation; 2.4.2 The unscented Kalman filter algorithm; 2.5 The point mass filter; 2.5.1 Transition and prediction densities; 2.5.2 The likelihood function and normalization factor; 2.5.3 Conditional density; 2.5.4 The point mass filter equations; 2.6 The particle filter; 2.6.1 The particle filter for single-object tracking; 2.6.2 The OID-PF for single-object tracking; 2.6.3 Auxiliary bootstrap filter for single-object tracking; 2.6.4 Extended Kalman auxiliary particle filter for single-object tracking; 2.7 Performance bounds.
|
505 |
8 |
|
|a 2.8 Illustrative exampleAngle tracking; 2.9 Summary; 3: Maneuvering object tracking; 3.1 Modeling for maneuvering object tracking; 3.1.1 Single model via state augmentation; 3.1.2 Multiple-model-based approaches; 3.2 The optimal Bayesian filter; 3.2.1 Process, measurement and noise models; 3.2.2 The conditional density and the conditional model probability; 3.2.3 Optimal estimation; 3.3 Generalized pseudo-Bayesian filters; 3.3.1 Generalized pseudo-Bayesian filter of order 1; 3.3.2 Generalized pseudo-Bayesian filter of order 2; 3.4 Interacting multiple model filter.
|
505 |
8 |
|
|a 3.4.1 The IMM filter equations3.5 Particle filters for maneuvering object tracking; 3.5.1 Bootstrap filter for maneuvering object tracking; 3.5.2 Auxiliary bootstrap filter for maneuvering object tracking; 3.5.3 Extended Kalman auxiliary particle filter for maneuvering object tracking; 3.6 Performance bounds; 3.7 Illustrative example; 3.8 Summary; 4: Single-object tracking in clutter; 4.1 The optimal Bayesian filter; 4.1.1 Object dynamics, sensor measurement and noise models; 4.1.2 Conditional density; 4.1.3 Optimal estimation; 4.2 The nearest neighbor filter.
|
500 |
|
|
|a 4.2.1 The nearest neighbor filter equations.
|
520 |
|
|
|a Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Linear programming.
|
650 |
|
0 |
|a Programming (Mathematics)
|
650 |
|
2 |
|a Programming, Linear
|
650 |
|
6 |
|a Programmation linéaire.
|
650 |
|
6 |
|a Programmation (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Linear Programming.
|2 bisacsh
|
650 |
|
7 |
|a Linear programming
|2 fast
|
650 |
|
7 |
|a Programming (Mathematics)
|2 fast
|
700 |
1 |
|
|a Morelande, Mark R.
|
700 |
1 |
|
|a Musicki, Darko.
|
700 |
1 |
|
|a Evans, Robin J.
|
776 |
0 |
8 |
|i Print version:
|a Challa, Subhash.
|t Fundamentals of Object Tracking.
|d Cambridge : Cambridge University Press, ©2011
|z 9780521876285
|
830 |
|
0 |
|a Cambridge books online.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=667571
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH21918507
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 22939823
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL667571
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 372798
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7113468
|
994 |
|
|
|a 92
|b IZTAP
|