Cargando…

Fundamentals of Object Tracking.

Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Challa, Subhash
Otros Autores: Morelande, Mark R., Musicki, Darko, Evans, Robin J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Colección:Cambridge books online.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn782857899
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120402s2011 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d AUD  |d WRJ  |d COO  |d CDX  |d OCLCO  |d IDEBK  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d YDXCP  |d OCLCQ  |d CNCGM  |d Z5A  |d UAB  |d OCLCQ  |d OCLCA  |d OCLCQ  |d INT  |d MERUC  |d ZCU  |d ICG  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d S9I  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 776967759  |a 798796700 
020 |a 9781139009324 
020 |a 113900932X 
020 |a 9780511975837  |q (ebook) 
020 |a 051197583X  |q (ebook) 
020 |a 9780521876285  |q (hardback) 
020 |a 0521876281  |q (hardback) 
029 1 |a AU@  |b 000052895848 
029 1 |a DEBSZ  |b 379318571 
029 1 |a DEBSZ  |b 445569972 
035 |a (OCoLC)782857899  |z (OCoLC)776967759  |z (OCoLC)798796700 
050 4 |a QA402.5.F86 2011 
072 7 |a TJFM  |2 bicssc 
082 0 4 |a 518.1  |a 519.7 
084 |a MAT017000  |2 bisacsh 
049 |a UAMI 
100 1 |a Challa, Subhash. 
245 1 0 |a Fundamentals of Object Tracking. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (390 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; FUNDAMENTALS OF OBJECT TRACKING; Title; Copyright; Contents; Preface; 1: Introduction to object tracking; 1.1 Overview of object tracking problems; 1.1.1 Air space monitoring; 1.1.2 Video surveillance; 1.1.3 Weather monitoring; 1.1.4 Cell biology; 1.2 Bayesian reasoning with application to object tracking; 1.2.1 Bayes' theorem; 1.2.2 Application to object tracking; 1.3 Recursive Bayesian solution for object tracking; 1.3.1 The generalized object dynamics equation; 1.3.2 The generalized sensor measurement equation; 1.3.3 Generalized object state prediction and conditional densities. 
505 8 |a 1.3.4 Generalized object state prediction and update1.3.5 Generalized object state filtering; 1.3.6 Generalized object state estimates; 1.4 Summary; 2: Filtering theory and non-maneuvering object tracking; 2.1 The optimal Bayesian filter; 2.1.1 Object dynamics and sensor measurement equations; 2.1.2 The optimal non-maneuvering object tracking filter recursion; 2.2 The Kalman filter; 2.2.1 Derivation of the Kalman filter; 2.2.2 The Kalman filter equations; 2.3 The extended Kalman filter; 2.3.1 Linear filter approximations; 2.3.2 The extended Kalman filter equations. 
505 8 |a 2.4 The unscented Kalman filter2.4.1 The unscented transformation; 2.4.2 The unscented Kalman filter algorithm; 2.5 The point mass filter; 2.5.1 Transition and prediction densities; 2.5.2 The likelihood function and normalization factor; 2.5.3 Conditional density; 2.5.4 The point mass filter equations; 2.6 The particle filter; 2.6.1 The particle filter for single-object tracking; 2.6.2 The OID-PF for single-object tracking; 2.6.3 Auxiliary bootstrap filter for single-object tracking; 2.6.4 Extended Kalman auxiliary particle filter for single-object tracking; 2.7 Performance bounds. 
505 8 |a 2.8 Illustrative exampleAngle tracking; 2.9 Summary; 3: Maneuvering object tracking; 3.1 Modeling for maneuvering object tracking; 3.1.1 Single model via state augmentation; 3.1.2 Multiple-model-based approaches; 3.2 The optimal Bayesian filter; 3.2.1 Process, measurement and noise models; 3.2.2 The conditional density and the conditional model probability; 3.2.3 Optimal estimation; 3.3 Generalized pseudo-Bayesian filters; 3.3.1 Generalized pseudo-Bayesian filter of order 1; 3.3.2 Generalized pseudo-Bayesian filter of order 2; 3.4 Interacting multiple model filter. 
505 8 |a 3.4.1 The IMM filter equations3.5 Particle filters for maneuvering object tracking; 3.5.1 Bootstrap filter for maneuvering object tracking; 3.5.2 Auxiliary bootstrap filter for maneuvering object tracking; 3.5.3 Extended Kalman auxiliary particle filter for maneuvering object tracking; 3.6 Performance bounds; 3.7 Illustrative example; 3.8 Summary; 4: Single-object tracking in clutter; 4.1 The optimal Bayesian filter; 4.1.1 Object dynamics, sensor measurement and noise models; 4.1.2 Conditional density; 4.1.3 Optimal estimation; 4.2 The nearest neighbor filter. 
500 |a 4.2.1 The nearest neighbor filter equations. 
520 |a Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Linear programming. 
650 0 |a Programming (Mathematics) 
650 2 |a Programming, Linear 
650 6 |a Programmation linéaire. 
650 6 |a Programmation (Mathématiques) 
650 7 |a MATHEMATICS  |x Linear Programming.  |2 bisacsh 
650 7 |a Linear programming  |2 fast 
650 7 |a Programming (Mathematics)  |2 fast 
700 1 |a Morelande, Mark R. 
700 1 |a Musicki, Darko. 
700 1 |a Evans, Robin J. 
776 0 8 |i Print version:  |a Challa, Subhash.  |t Fundamentals of Object Tracking.  |d Cambridge : Cambridge University Press, ©2011  |z 9780521876285 
830 0 |a Cambridge books online. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=667571  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21918507 
938 |a Coutts Information Services  |b COUT  |n 22939823 
938 |a EBL - Ebook Library  |b EBLB  |n EBL667571 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 372798 
938 |a YBP Library Services  |b YANK  |n 7113468 
994 |a 92  |b IZTAP