|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn781375040 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
110609s2008 ne o 000 0 eng |
040 |
|
|
|a AU@
|b eng
|e pn
|c AU@
|d EBLCP
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d ZCU
|d MERUC
|d ICG
|d OCLCQ
|d UMR
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 437232548
|
020 |
|
|
|a 9780387685601
|
020 |
|
|
|a 038768560X
|
029 |
0 |
|
|a AU@
|b 000048826279
|
029 |
1 |
|
|a DEBBG
|b BV044130742
|
029 |
1 |
|
|a DEBSZ
|b 396199240
|
029 |
1 |
|
|a DEBSZ
|b 430666799
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999913211705765
|
035 |
|
|
|a (OCoLC)781375040
|z (OCoLC)437232548
|
050 |
|
4 |
|a QA274.A25 2008
|
082 |
0 |
4 |
|a 519.23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Aalen, Odd O.
|
245 |
1 |
0 |
|a Event History Analysis :
|b a Process Point of View.
|
260 |
|
|
|a Dordrecht :
|b Springer,
|c 2008.
|
300 |
|
|
|a 1 online resource (549 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Statistics for Biology and Health
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Survival and Event History Analysis; Preface; 1 An introduction to survival and event history analysis; 2 Stochastic processes in event history analysis; 3 Nonparametric analysis of survival and event history data; 4 Regression models; 5 Parametric counting process models; 6 Unobserved heterogeneity: The odd effects of frailty; 7 Multivariate frailty models; 8 Marginal and dynamic models for recurrent events and clustered survival data; 9 Causality; 10 First passage time models: Understanding the shape of the hazard rate; 11 Diffusion and Lévy process models for dynamic frailty.
|
505 |
8 |
|
|a A Markov processes and the product-integralB Vector-valued counting processes, martingales and stochastic integrals; References; Author index; Index; com.
|
520 |
|
|
|a Demonstrates how counting processes, martingales, and stochastic integrals fit nicely with censored data. This book shows how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. It includes examples from medicine. It is intended for investigators who use event history methods.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
7 |
|a Mathematics
|2 fast
|
700 |
1 |
|
|a Borgan, Ørnulf.
|
700 |
1 |
|
|a Gjessing, Håkon K.
|
758 |
|
|
|i has work:
|a Event History Analysis (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGwXT6xGgmmwvhJjRCykym
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Aalen, Odd O.
|t Event History Analysis : A Process Point of View.
|d Dordrecht : Springer, ©2008
|z 9780387202877
|
830 |
|
0 |
|a Statistics for biology and health.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=364078
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL364078
|
994 |
|
|
|a 92
|b IZTAP
|