Cargando…

Bayesian biostatistics /

The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lesaffre, Emmanuel
Otros Autores: Lawson, Andrew (Andrew B.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : Wiley, 2012.
Colección:Statistics in practice.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn778991200
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 120301s2012 enk ob 001 0 eng
010 |a  2012009090 
040 |a DLC  |b eng  |e pn  |c DLC  |d YDX  |d N$T  |d IDEBK  |d EBLCP  |d YDXCP  |d E7B  |d DG1  |d CDX  |d DEBSZ  |d COO  |d UBY  |d COU  |d TEFOD  |d NLGGC  |d CHVBK  |d DEBBG  |d TEFOD  |d OCLCQ  |d AZK  |d DG1  |d OCLCQ  |d OCLCA  |d COCUF  |d DG1  |d OCLCO  |d MERER  |d OCLCO  |d Z5A  |d MOR  |d OCLCO  |d LIP  |d OCLCO  |d PIFAG  |d OCLCO  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCA  |d U3W  |d OCLCA  |d OCLCQ  |d UUM  |d OCLCF  |d OCLCO  |d STF  |d WRM  |d OCLCO  |d NRAMU  |d ICG  |d VTS  |d INT  |d VT2  |d AU@  |d OCLCO  |d OCLCQ  |d WYU  |d CUY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d U3G  |d DKC  |d OCLCQ  |d UKAHL  |d UX1  |d OL$  |d OCLCQ  |d OCLCA  |d UKCRE  |d OCLCQ  |d LUN  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 795895458  |a 802068211  |a 804863091  |a 817090429  |a 961569390  |a 962680378  |a 966541568  |a 988411347  |a 991995320  |a 1037731693  |a 1038571103  |a 1045520117  |a 1055360104  |a 1081249614  |a 1089030310  |a 1101713735  |a 1148126608  |a 1153490482  |a 1170770477  |a 1170901835 
020 |a 9781118314579  |q (ePub) 
020 |a 1118314573  |q (ePub) 
020 |a 9781118314562  |q (MobiPocket) 
020 |a 1118314565  |q (MobiPocket) 
020 |a 9781119942405  |q (Adobe PDF) 
020 |a 1119942403  |q (Adobe PDF) 
020 |a 9781119942412 
020 |a 1119942411 
020 |a 1280772557 
020 |a 9781280772559 
020 |z 9781118321850  |q (pbk.) 
020 |z 9780470018231 
020 |z 0470018232 
024 8 |a 9786613683328 
029 1 |a AU@  |b 000049793816 
029 1 |a AU@  |b 000052905635 
029 1 |a CHNEW  |b 000939362 
029 1 |a CHSLU  |b 001176868 
029 1 |a CHVBK  |b 328753556 
029 1 |a CHVBK  |b 480196524 
029 1 |a DEBBG  |b BV040818578 
029 1 |a DEBBG  |b BV041906635 
029 1 |a DEBBG  |b BV042794530 
029 1 |a DEBBG  |b BV044188557 
029 1 |a DEBSZ  |b 372892140 
029 1 |a DEBSZ  |b 397324952 
029 1 |a DEBSZ  |b 485016141 
029 1 |a NZ1  |b 14524733 
029 1 |a AU@  |b 000073145883 
035 |a (OCoLC)778991200  |z (OCoLC)795895458  |z (OCoLC)802068211  |z (OCoLC)804863091  |z (OCoLC)817090429  |z (OCoLC)961569390  |z (OCoLC)962680378  |z (OCoLC)966541568  |z (OCoLC)988411347  |z (OCoLC)991995320  |z (OCoLC)1037731693  |z (OCoLC)1038571103  |z (OCoLC)1045520117  |z (OCoLC)1055360104  |z (OCoLC)1081249614  |z (OCoLC)1089030310  |z (OCoLC)1101713735  |z (OCoLC)1148126608  |z (OCoLC)1153490482  |z (OCoLC)1170770477  |z (OCoLC)1170901835 
037 |a 10.1002/9781119942412  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
037 |a C1E67D5D-9240-41B7-B825-ECA58B089743  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QH323.5 
060 4 |a QH 323.5 
072 7 |a NAT  |x 027000  |2 bisacsh 
072 7 |a SCI  |x 008000  |2 bisacsh 
072 7 |a SCI  |x 086000  |2 bisacsh 
082 0 0 |a 570.1/5195  |2 23 
049 |a UAMI 
100 1 |a Lesaffre, Emmanuel. 
245 1 0 |a Bayesian biostatistics /  |c Emmanuel Lesaffre, Andrew B. Lawson. 
260 |a Chichester, West Sussex :  |b Wiley,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Statistics in practice 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a Basic concepts in Bayesian methods -- Bayes theorem -- Posterior summary measures -- More than one parameter -- The prior distribution -- Markov chain Monte Carlo -- Software -- Hierarchical models -- Model building and assessment -- Variable selection -- Bioassay -- Measurement error -- Survival analysis -- Longitudinal analysis -- Disease mapping & image analysis -- Final chapter -- Distributions. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introduc. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Biometry  |x Methodology. 
650 0 |a Bayesian statistical decision theory. 
650 2 |a Biostatistics  |x methods 
650 2 |a Bayes Theorem 
650 6 |a Biométrie  |x Méthodologie. 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Théorème de Bayes. 
650 7 |a NATURE  |x Reference.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Biology.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x General.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
700 1 |a Lawson, Andrew  |q (Andrew B.) 
758 |i has work:  |a Bayesian biostatistics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGKp69VHvx44Dp6YMb33V3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lesaffre, Emmanuel.  |t Bayesian biostatistics.  |d Chichester, West Sussex : John Wiley & Sons, 2012  |z 9781118321850  |w (DLC) 2012004237 
830 0 |a Statistics in practice. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=943817  |z Texto completo 
880 0 |6 505-00/(S  |a Bayesian Biostatistics -- Contents -- Preface -- Notation, terminology and some guidance for reading the book -- Part I BASIC CONCEPTS IN BAYESIAN METHODS -- 1 Modes of statistical inference -- 1.1 The frequentist approach: A critical reflection -- 1.1.1 The classical statistical approach -- 1.1.2 The P-value as a measure of evidence -- 1.1.3 The confidence interval as a measure of evidence -- 1.1.4 An historical note on the two frequentist paradigms -- 1.2 Statistical inference based on the likelihood function -- 1.2.1 The likelihood function -- 1.2.2 The likelihood principles -- 1.3 The Bayesian approach: Some basic ideas -- 1.3.1 Introduction -- 1.3.2 Bayes theorem -- discrete version for simple events -- 1.4 Outlook -- Exercises -- 2 Bayes theorem: Computing the posterior distribution -- 2.1 Introduction -- 2.2 Bayes theorem -- the binary version -- 2.3 Probability in a Bayesian context -- 2.4 Bayes theorem -- the categorical version -- 2.5 Bayes theorem -- the continuous version -- 2.6 The binomial case -- 2.7 The Gaussian case -- 2.8 The Poisson case -- 2.9 The prior and posterior distribution of h(θ) -- 2.10 Bayesian versus likelihood approach -- 2.11 Bayesian versus frequentist approach -- 2.12 The different modes of the Bayesian approach -- 2.13 An historical note on the Bayesian approach -- 2.14 Closing remarks -- Exercises -- 3 Introduction to Bayesian inference -- 3.1 Introduction -- 3.2 Summarizing the posterior by probabilities -- 3.3 Posterior summary measures -- 3.3.1 Characterizing the location and variability of the posterior distribution -- 3.3.2 Posterior interval estimation -- 3.4 Predictive distributions -- 3.4.1 The frequentist approach to prediction -- 3.4.2 The Bayesian approach to prediction -- 3.4.3 Applications -- 3.5 Exchangeability -- 3.6 A normal approximation to the posterior. 
880 8 |6 505-01/(S  |a 3.6.1 A Bayesian analysis based on a normal approximation to the likelihood -- 3.6.2 Asymptotic properties of the posterior distribution -- 3.7 Numerical techniques to determine the posterior -- 3.7.1 Numerical integration -- 3.7.2 Sampling from the posterior -- 3.7.3 Choice of posterior summary measures -- 3.8 Bayesian hypothesis testing -- 3.8.1 Inference based on credible intervals -- 3.8.2 The Bayes factor -- 3.8.3 Bayesian versus frequentist hypothesis testing -- 3.9 Closing remarks -- Exercises -- 4 More than one parameter -- 4.1 Introduction -- 4.2 Joint versus marginal posterior inference -- 4.3 The normal distribution with μ and σ2 unknown -- 4.3.1 No prior knowledge on μ and σ2 is available -- 4.3.2 An historical study is available -- 4.3.3 Expert knowledge is available -- 4.4 Multivariate distributions -- 4.4.1 The multivariate normal and related distributions -- 4.4.2 The multinomial distribution -- 4.5 Frequentist properties of Bayesian inference -- 4.6 Sampling from the posterior distribution: The Method of Composition -- 4.7 Bayesian linear regression models -- 4.7.1 The frequentist approach to linear regression -- 4.7.2 A noninformative Bayesian linear regression model -- 4.7.3 Posterior summary measures for the linear regression model -- 4.7.4 Sampling from the posterior distribution -- 4.7.5 An informative Bayesian linear regression model -- 4.8 Bayesian generalized linear models -- 4.9 More complex regression models -- 4.10 Closing remarks -- Exercises -- 5 Choosing the prior distribution -- 5.1 Introduction -- 5.2 The sequential use of Bayes theorem -- 5.3 Conjugate prior distributions -- 5.3.1 Univariate data distributions -- 5.3.2 Normal distribution -- mean and variance unknown -- 5.3.3 Multivariate data distributions -- 5.3.4 Conditional conjugate and semiconjugate distributions -- 5.3.5 Hyperpriors. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH23094470 
938 |a Coutts Information Services  |b COUT  |n 22675752  |c 45.00 GBP 
938 |a ebrary  |b EBRY  |n ebr10570719 
938 |a EBSCOhost  |b EBSC  |n 462881 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 368332 
938 |a YBP Library Services  |b YANK  |n 9571211 
938 |a YBP Library Services  |b YANK  |n 8796491 
938 |a YBP Library Services  |b YANK  |n 12671989 
994 |a 92  |b IZTAP