Cargando…

Functional Analysis : an Introduction to Banach Space Theory.

A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiley-Interscience 2011.
Colección:Pure and applied mathematics (John Wiley & Sons : Unnumbered)
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBOOKCENTRAL_ocn778616744
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 120227s2011 xx o 000 0 eng d
010 |z  00036822  
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d CUY  |d OCLCO  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d DKC  |d AU@  |d OCLCQ  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 816867733 
020 |a 1283306255 
020 |a 9781283306256 
020 |a 9781118031247 
020 |a 1118031245 
020 |z 0471372145 
020 |z 9780471372141 
029 1 |a DEBSZ  |b 430991533 
035 |a (OCoLC)778616744  |z (OCoLC)816867733 
050 4 |a QA320 
072 7 |a PBKG  |2 bicssc 
082 0 4 |a 515.732 
049 |a UAMI 
245 0 0 |a Functional Analysis :  |b an Introduction to Banach Space Theory. 
260 |b Wiley-Interscience  |c 2011. 
300 |a 1 online resource (379 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Pure and applied mathematics 
520 |a A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader's mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material. 
504 |a Includes bibliographical references (p. 341-344) and indexes. 
505 0 |a Functional Analysis: An Introduction to Banach Space Theory; CONTENTS; Preface; Introduction; Notation and Conventions; Products and the Product Topology; Finite-Dimensional Spaces and Riesz's Lemma; The Daniell Integral; 1. Basic Definitions and Examples; 1.1 Examples of Banach Spaces; 1.2 Examples and Calculation of Dual Spaces; 2. Basic Principles with Applications; 2.1 The Hahn-Banach Theorem; 2.2 The Banach-Steinhaus Theorem; 2.3 The Open-Mapping and Closed-Graph Theorems; 2.4 Applications of the Basic Principles; 3. Weak Topologies and Applications 
505 8 |a 3.1 Convex Sets and Minkowski Functionals3.2 Dual Systems and Weak Topologies; 3.3 Convergence and Compactness in Weak Topologies; 3.4 The Krein-Milman Theorem; 4. Operators on Banach Spaces; 4.1 Preliminary Facts and Linear Projections; 4.2 Adjoint Operators; 4.3 Weakly Compact Operators; 4.4 Compact Operators; 4.5 The Riesz-Schauder Theory; 4.6 Strictly Singular and Strictly Cosingular Operators; 4.7 Reflexivity and Factoring Weakly Compact Operators; 5. Bases in Banach Spaces; 5.1 Introductory Concepts; 5.2 Bases in Some Special Spaces; 5.3 Equivalent Bases and Complemented Subspaces 
505 8 |a 5.4 Basic Selection Principles6. Sequences Series and a Little Geometry in Banach Spaces; 6.1 Phillips' Lemma; 6.2 Special Bases and Reflexivity in Banach Spaces; 6.3 Unconditionally Converging and Dunford-Pettis Operators; 6.4 Support Functionals and Convex Sets; 6.5 Convexity and the Differentiability of Norms; Bibliography; Author/Name Index; Subject Index; Symbol Index 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Functional analysis. 
650 0 |a Calculus of variations. 
650 6 |a Analyse fonctionnelle. 
650 6 |a Calcul des variations. 
650 7 |a Calculus of variations  |2 fast 
650 7 |a Functional analysis  |2 fast 
720 |a Morrison, Terry J. 
758 |i has work:  |a Functional analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGJgqTP3Xfbc4PbwMQrqFC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
830 0 |a Pure and applied mathematics (John Wiley & Sons : Unnumbered) 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=695061  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL695061 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 330625 
994 |a 92  |b IZTAP