Optical coatings and thermal noise in precision measurement /
"Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers e...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
©2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; OPTICAL COATINGS AND THERMAL NOISE IN PRECISION MEASUREMENT; Title; Copyright; Contents; Contributors; Foreword; Preface; 1 Theory of thermal noise in optical mirrors; 1.1 Introduction; 1.2 Theory of mechanical thermal noise; 1.3 Theory of optical thermal noise; 1.4 Standard quantum limit; 2 Coating technology; 2.1 Introduction; 2.2 Coating methods; 2.2.1 Thermal evaporation; 2.2.2 Glow discharge sputtering; 2.2.3 Ion beam sputter deposition (IBSD); Ion source; Sputtering process; 2.3 Substrates; 2.4 Coating uniformity; 2.5 Thickness control; 2.6 Coating materials.
- 2.7 Special coatings for Mesa beams2.8 Conclusion; 3 Compendium of thermal noises in optical mirrors; 3.1 Substrate Brownian thermal noise; 3.2 Substrate thermoelastic noise; 3.3 Substrate thermorefractive noise; 3.4 Substrate photothermoelastic noise; 3.5 Substrate cosmic ray noise; 3.6 Substrate thermochemical noise; 3.7 Coating Brownian thermal noise; 3.8 Coating photoelastic noise; 3.9 Coating thermo-optic noise; 3.9.1 Coating thermoelastic noise; 3.9.2 Coating thermorefractive noise; 3.9.3 Combined thermo-optic noise; 3.10 Coating photothermo-optic noise.
- 3.11 Substrate and coating Stefan-Boltzmann radiation noise3.12 Conclusion; 4 Coating thermal noise; 4.1 Introduction; 4.1.1 Thermal noise; 4.1.2 Inhomogeneous loss and coating thermal noise; 4.1.3 Calculation of coating thermal noise; 4.1.4 Loss parallel and perpendicular to the coating layers; 4.1.5 Refinements to coating thermal noise theory; 4.1.6 Reducing coating thermal noise; 4.2 Coating mechanical loss; 4.2.1 Background; Measuring coating mechanical loss; 4.2.2 Coating loss research; 4.2.3 Alternative high index materials; 4.2.4 The effect of deposition parameters.
- 4.2.5 Mechanical loss of coatings suitable for other wavelengths4.2.6 Dissipation mechanisms in coating materials; 4.2.7 Barrier height distributions; 4.2.8 Atomic modeling of amorphous coatings; 4.2.9 Conclusion and future outlook; 5 Direct measurements of coating thermal noise; 5.1 Introduction; 5.2 General considerations; 5.3 Noise sources of interferometer; 5.3.1 Thermal noise; Suspension thermal noise; Spacer thermal noise; 5.3.2 Optical readout noise; Shot noise; Radiation pressure noise; 5.3.3 Noises in the laser source; Frequency noise; Intensity noise; 5.3.4 Non-fundamental noise.
- Seismic noiseElectric circuit noise; Residual gas noise; Other noise sources; 5.4 Direct thermal noise measurements by free-mirror cavities; 5.4.1 Background; 5.4.2 Experiment at University of Tokyo; Experimental setup; Experimental results; 5.4.3 Experiment at Caltech; Experimental setup; Experimental results; 5.5 Direct thermal noise measurements by fixed-spacer cavities; 5.5.1 Background; 5.5.2 Experiment at JILA/NIST; Experimental setup; Experimental result; 5.5.3 Experiment at NPL; Experimental setup; Experimental result; 5.6 Summary; 6 Methods of improving thermal noise.