|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn775870071 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120209s2011 enk ob 000 0 eng d |
040 |
|
|
|a MHW
|b eng
|e pn
|c MHW
|d EBLCP
|d YDXCP
|d MERUC
|d IDEBK
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d N$T
|d E7B
|d OSU
|d OCLCQ
|d S3O
|d OCLCQ
|d OCLCO
|d ZCU
|d ICG
|d OCLCQ
|d TKN
|d OCLCA
|d DKC
|d AGLDB
|d SNK
|d BTN
|d MHW
|d INTCL
|d AUW
|d AU@
|d OCLCO
|d OCLCQ
|d M8D
|d A6Q
|d S8J
|d G3B
|d OCLCQ
|d LUN
|d AJS
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 776897016
|a 785782050
|a 794544467
|a 1167015643
|a 1264820925
|
020 |
|
|
|a 9781139221580
|
020 |
|
|
|a 1139221582
|
020 |
|
|
|a 9786613580474
|
020 |
|
|
|a 6613580473
|
020 |
|
|
|a 9781139225014
|q (electronic bk.)
|
020 |
|
|
|a 1139225014
|q (electronic bk.)
|
020 |
|
|
|a 1139218492
|
020 |
|
|
|a 9781139218498
|
020 |
|
|
|z 9781107648852
|
020 |
|
|
|z 1107648858
|
020 |
|
|
|a 9780511984440
|q (ebook)
|
020 |
|
|
|a 0511984448
|
029 |
1 |
|
|a DEBSZ
|b 37290534X
|
029 |
1 |
|
|a DEBSZ
|b 379326043
|
035 |
|
|
|a (OCoLC)775870071
|z (OCoLC)776897016
|z (OCoLC)785782050
|z (OCoLC)794544467
|z (OCoLC)1167015643
|z (OCoLC)1264820925
|
050 |
|
4 |
|a QA247 .N56 2011
|
072 |
|
7 |
|a PBH
|2 bicssc
|
072 |
|
7 |
|a MAT
|x 022000
|2 bisacsh
|
082 |
0 |
4 |
|a 512.2
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Coates, John.
|
245 |
1 |
0 |
|a Non-abelian Fundamental Groups and Iwasawa Theory.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (322 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Displays the intricate interplay between different foundations of non-commutative number theory.
|
505 |
0 |
|
|6 880-01
|a Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Preface; Lectures on anabelian phenomena in geometry and arithmetic; Part I. Introduction and motivation; A. First examples; B. Galois characterization of global fields; Part II. Grothendieck's anabelian geometry; A. Warm-up: birational anabelian conjectures; B. Anabelian conjectures for curves; C. The section conjectures; Part III. Beyond the arithmetical action; A. Small Galois groups and valuations; B. Variation of fundamental groups in families of curves.
|
504 |
|
|
|a Includes bibliographical references.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Iwasawa theory.
|
650 |
|
0 |
|a Non-Abelian groups.
|
650 |
|
4 |
|a Iwasawa theory.
|
650 |
|
4 |
|a Non-Abelian groups.
|
650 |
|
6 |
|a Théorie d'Iwasawa.
|
650 |
|
6 |
|a Groupes non abéliens.
|
650 |
|
7 |
|a MATHEMATICS
|x Number Theory.
|2 bisacsh
|
650 |
|
7 |
|a Iwasawa theory
|2 fast
|
650 |
|
7 |
|a Non-Abelian groups
|2 fast
|
650 |
|
7 |
|a Aufsatzsammlung
|2 gnd
|
650 |
|
7 |
|a Iwasawa-Theorie
|2 gnd
|
650 |
|
7 |
|a Nichtabelsche Gruppe
|2 gnd
|
700 |
1 |
|
|a Kim, Minhyong.
|
700 |
1 |
|
|a Pop, Florian.
|
700 |
1 |
|
|a Saïdi, Mohamed.
|
700 |
1 |
|
|a Schneider, Peter.
|
776 |
0 |
8 |
|i Print version:
|z 9781107648852
|
830 |
|
0 |
|a London Mathematical Society lecture note series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=833518
|z Texto completo
|
880 |
8 |
|
|6 505-01/(S
|a 5 Analogue of the MH(G) conjecture for Hida families -- 6 Vanishing of the R-torsion -- References -- Galois theory and Diophantine geometry -- 1 The deficiency of abelian motives -- 2 Motivic fundamental groups and Selmer varieties -- 3 Diophantine finiteness -- 4 An explicit formula and speculations -- References -- Potential modularity -- a survey -- 1 Introduction -- 2 Semistable elliptic curves over Q are modular -- 3 Why the semistability assumption-- 4 All elliptic curves over Q are modular -- 5 Kisin's modularity lifting theorems -- 6 Generalisations to totally real fields -- 7 Potential modularity pre-Kisin and the p-λ trick -- 8 Potential modularity after Kisin -- 9 Some final remarks -- References -- Remarks on some locally Qp-analyticrep resentations of GL2(F) in the crystalline case -- 1 Introduction and notations -- 2 Quick review of the GL2(Qp)-case -- 3 Quick review of weakly admissible filtered φ-modules -- 4 Some locally Qp-analytic representations of GL2(F) -- 5 Weak admissibility and GL2(F)-unitarity I -- 6 Amice-Vélu and Vishik revisited -- 7 Weak admissibility and GL2(F)-unitarity II -- 8 Local-global considerations -- 9 The case where the Galois representation is reducible -- References -- Completed cohomology -- a survey -- 1 Definitions -- 2 Non-commutative Iwasawa theory -- 3 Poincaré duality -- 4 A simple example of everything so far -- 5 Congruence quotients of symmetric spaces -- 6 Conjectures on codimensions -- 7 Mod p analogues -- 8 Heuristics related to the p-adic Langlands programme -- References -- Tensor and homotopy criteria for functional equations of ℓ-adic and classical iterated integrals -- 1 Introduction -- 2 Multi-Kummer characters -- 3 Multi-Kummer duals -- 4 Iterated integrals and their functional equations -- 5 Case of polylogarithms -- 6 Examples -- References.
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL833518
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10533304
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 416715
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 358047
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7430546
|
994 |
|
|
|a 92
|b IZTAP
|