Cargando…

Proofs and Computations.

This major graduate-level text provides a detailed, self-contained coverage of proof theory.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schwichtenberg, Helmut
Otros Autores: Wainer, S. S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Colección:Perspectives in logic.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn775869745
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120209s2011 enk ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d YDXCP  |d IDEBK  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d N$T  |d VPI  |d UIU  |d CAMBR  |d COO  |d E7B  |d CDX  |d OCLCQ  |d S3O  |d OCLCQ  |d OTZ  |d OCLCQ  |d MERUC  |d ZCU  |d ICG  |d OCLCQ  |d TKN  |d DKC  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d AU@  |d OCLCQ  |d M8D  |d OCLCQ  |d S8J  |d G3B  |d OCLCQ  |d STF  |d ESU  |d RC0  |d LUN  |d DGN  |d CN6UV  |d AJS  |d SDF  |d HS0  |d OCLCQ  |d OCLCO  |d CNNOR  |d RDF  |d SGP  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M 
066 |c Grek  |c (S 
019 |a 776895890  |a 785781936  |a 794544280  |a 994934040  |a 1167285037  |a 1264916582 
020 |a 9781139220200 
020 |a 1139220209 
020 |a 9786613579836 
020 |a 6613579831 
020 |a 9781139223638  |q (electronic bk.) 
020 |a 1139223631  |q (electronic bk.) 
020 |a 9781139031905  |q (electronic bk.) 
020 |a 1139031902  |q (electronic bk.) 
020 |a 9781139217101 
020 |a 1139217100 
020 |z 9780521517690 
020 |z 0521517699 
029 1 |a CHNEW  |b 000618828 
029 1 |a DEBSZ  |b 372905102 
029 1 |a DEBSZ  |b 379325888 
035 |a (OCoLC)775869745  |z (OCoLC)776895890  |z (OCoLC)785781936  |z (OCoLC)794544280  |z (OCoLC)994934040  |z (OCoLC)1167285037  |z (OCoLC)1264916582 
050 4 |a QA267 .Sch889 2012 
072 7 |a PBCD  |2 bicssc 
072 7 |a COM  |x 037000  |2 bisacsh 
082 0 4 |a 511.3 
049 |a UAMI 
100 1 |a Schwichtenberg, Helmut. 
245 1 0 |a Proofs and Computations. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (482 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Perspectives in Logic 
588 0 |a Print version record. 
520 |a This major graduate-level text provides a detailed, self-contained coverage of proof theory. 
504 |a Includes bibliographical references (pages 431-455) and index. 
505 8 |6 880-01  |a 6.5.3. Dense and separating sets. -- 6.6. Notes -- Chapter 7: EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS -- 7.1. A theory of computable functionals -- 7.1.1. Brouwer-Heyting-Kolmogorov and Gödel. -- 7.1.2. Formulas and predicates. -- 7.1.3. Equalities. -- 7.1.4. Existence, conjunction and disjunction. -- 7.1.5. Further examples. -- 7.1.6. Totality and induction. -- 7.1.7. Coinductive definitions. -- 7.2. Realizability interpretation -- 7.2.1. An informal explanation. -- 7.2.2. Decorating ₂!and 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computable functions. 
650 0 |a Machine theory. 
650 0 |a Proof theory. 
650 4 |a Machine theory. 
650 6 |a Fonctions calculables. 
650 6 |a Théorie des automates. 
650 6 |a Théorie de la preuve. 
650 7 |a COMPUTERS  |x Machine Theory.  |2 bisacsh 
650 0 7 |a Demostración, Teoría de la  |2 embucm 
650 7 |a Computable functions  |2 fast 
650 7 |a Machine theory  |2 fast 
650 7 |a Proof theory  |2 fast 
700 1 |a Wainer, S. S. 
776 0 8 |i Print version:  |z 9780521517690 
830 0 |a Perspectives in logic. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=833389  |z Texto completo 
880 8 |6 505-01/Grek  |a 5.2.2. Collapsing properties of G. -- 5.2.3. The functors G, B and ϕ. -- 5.2.4. The accessible recursive functions. -- 5.3. Proof-theoretic characterizations of accessibility -- 5.3.1. Finitely iterated inductive definitions. -- 5.3.2. The infinitary system IDk(W)∞. -- 5.3.3. Embedding IDk(W) into IDk(W)∞. -- 5.3.4. Ordinal analysis of IDk. -- 5.3.5. Accessible = provably recursive in ID<∞. -- 5.3.6. Provable ordinals of IDk(W). -- 5.4. ID<∞ and Π11-CA0 -- 5.4.1. Embedding ID<(W) in Π11-CA0. -- 5.4.2. Reduction ofΠ11-forms toWi sets. -- 5.4.3. Conservativity of Π11-CA0 over ID<∞(W). -- 5.5. An independence result: extended Kruskal theorem -- 5.5.1. φ-terms, trees and i-sequences. -- 5.5.2. The computation sequence is bad. -- 5.6. Notes -- Part 3: CONSTRUCTIVE LOGIC AND COMPLEXITY -- Chapter 6: COMPUTABILITY IN HIGHER TYPES -- 6.1. Abstract computability via information systems -- 6.1.1. Information systems. -- 6.1.2. Domains with countable basis. -- 6.1.3. Function spaces. -- 6.1.4. Algebras and types. -- 6.1.5. Partial continuous functionals. -- 6.1.6. Constructors as continuous functions. -- 6.1.7. Total and cototal ideals in a finitary algebra. -- 6.2. Denotational and operational semantics -- 6.2.1. Structural recursion operators and Gödel's T. -- 6.2.2. Conversion. -- 6.2.3. Corecursion. -- 6.2.4. A common extension T+ of Gödel's T and Plotkin's PCF. -- 6.2.5. Confluence. -- 6.2.6. Ideals as denotation of terms. -- 6.2.7. Preservation of values. -- 6.2.8. Operational semantics -- adequacy. -- 6.3. Normalization -- 6.3.1. Strong normalization. -- 6.3.2. Normalization by evaluation. -- 6.4. Computable functionals -- 6.4.1. Fixed point operators. -- 6.4.2. Rules for pcond, ∃ and valmax. -- 6.4.3. Plotkin's definability theorem. -- 6.5. Total functionals -- 6.5.1. Total and structure-total ideals. -- 6.5.2. Equality for total functionals. 
880 0 |6 505-00/(S  |a Cover -- Proofs and Computations -- PERSPECTIVES IN LOGIC -- Title -- Copyright -- Dedication -- CONTENTS -- PREFACE -- PRELIMINARIES -- Part 1: BASIC PROOF THEORY AND COMPUTABILITY -- Chapter 1: LOGIC -- 1.1. Natural deduction -- 1.1.1. Terms and formulas. -- 1.1.2. Substitution, free and bound variables. -- 1.1.3. Subformulas. -- 1.1.4. Examples of derivations. -- 1.1.5. Introduction and elimination rules for → and ∀. -- 1.1.6. Properties of negation. -- 1.1.7. Introduction and elimination rules for disjunction ∨, conjunction ∧ and existence ∃. -- 1.1.8. Intuitionistic and classical derivability. -- 1.1.9. Gödel-Gentzen translation. -- 1.2. Normalization -- 1.2.1. The Curry-Howard correspondence. -- 1.2.2. Strong normalization. -- 1.2.3. Uniqueness of normal forms. -- 1.2.4. The structure of normal derivations. -- 1.2.5. Normal vs. non-normal derivations. -- 1.2.6. Conversions for ∨, ∧, ∃. -- 1.2.7. Strong normalization for β-, π- and σ-conversions. -- 1.2.8. The structure of normal derivations, again. -- 1.3. Soundness and completeness for tree models -- 1.3.1. Tree models. -- 1.3.2. Covering lemma. -- 1.3.3. Soundness. -- 1.3.4. Counter models. -- 1.3.5. Completeness. -- 1.4. Soundness and completeness of the classical fragment -- 1.4.1. Models. -- 1.4.2. Soundness of classical logic. -- 1.4.3. Completeness of classical logic. -- 1.4.4. Compactness and Löwenheim-Skolem theorems. -- 1.5. Tait calculus -- 1.6. Notes -- Chapter 2: RECURSION THEORY -- 2.1. Register machines -- 2.1.1. Programs. -- 2.1.2. Program constructs. -- 2.1.3. Register machine computable functions. -- 2.2. Elementary functions -- 2.2.1. Definition and simple properties. -- 2.2.2. Elementary relations. -- 2.2.3. The class ε. -- 2.2.4. Closure properties of ε. -- 2.2.5. Coding finite lists. -- 2.3. Kleene's normal form theorem -- 2.3.1. Program numbers. -- 2.3.2. Normal form. 
880 8 |6 505-00/(S  |a 2.3.3. Στ̔̈ΒΑ·1-definable relations and μ-recursive functions. -- 2.3.4. Computable functions. -- 2.3.5. Undecidability of the halting problem. -- 2.4. Recursive definitions -- 2.4.1. Least fixed points of recursive definitions. -- 2.4.2. The principles of finite support and monotonicity, and the effective index property. -- 2.4.3. Recursion theorem. -- 2.4.4. Recursive programs and partial recursive functions. -- 2.4.5. Relativized recursion. -- 2.5. Primitive recursion and for-loops -- 2.5.1. Primitive recursive functions. -- 2.5.2. Loop-programs. -- 2.5.3. Reduction to primitive recursion. -- 2.5.4. A complexity hierarchy for Prim. -- 2.6. The arithmetical hierarchy -- 2.6.1. Kleene's second recursion theorem. -- 2.6.2. Characterization of Σ01-definable and recursive relations. -- 2.6.3. Arithmetical relations. -- 2.6.4. Closure properties. -- 2.6.6. Σ0r-complete relations. -- 2.7. The analytical hierarchy -- 2.7.1. Analytical relations. -- 2.7.2. Closure properties. -- 2.7.3. Universal Σ1r+1-definable relations. -- 2.7.4. Σ1r-complete relations. -- 2.8. Recursive type-2 functionals and well-foundedness -- 2.8.1. Computation trees. -- 2.8.2. Ordinal assignments -- recursive ordinals. -- 2.8.3. A hierarchy of total recursive functionals. -- 2.9. Inductive definitions -- 2.9.1. Monotone operators. -- 2.9.2. Induction and coinduction principles. -- 2.9.3. Approximation of the least and greatest fixed point. -- 2.9.4. Continuous operators. -- 2.9.5. The accessible part of a relation. -- 2.9.6. Inductive definitions over N. -- 2.9.7. Definability of least fixed points for monotone operators. -- 2.9.8. Some counter examples. -- 2.10. Notes -- Chapter 3: GÖDEL'S THEOREMS -- 3.1. IΔ0(exp) -- 3.1.1. Basic arithmetic in IΔ0(exp). -- 3.1.2. Provable recursion in IΔ0(exp). -- 3.1.3. Proof-theoretic characterization. -- 3.2. Gödel numbers. 
880 8 |6 505-00/(S  |a 3.2.1. Gödel numbers of terms, formulas and derivations. -- 3.2.2. Elementary functions on Gödel numbers. -- 3.2.3. Axiomatized theories. -- 3.2.4. Undefinability of the notion of truth. -- 3.3. The notion of truth in formal theories -- 3.3.1. Representable relations and functions. -- 3.3.2. Undefinability of the notion of truth in formal theories. -- 3.4. Undecidability and incompleteness -- 3.4.1. Undecidability. -- 3.4.2. Incompleteness. -- 3.5. Representability -- 3.5.1. Weak arithmetical theories. -- 3.5.2. Robinson's theory Q. -- 3.5.3. Σ1ı-formulas. -- 3.6. Unprovability of consistency -- 3.6.1. Σ1ı-completeness. -- 3.6.2. Derivability conditions. -- 3.7. Notes -- Part 2: PROVABLE RECURSION IN CLASSICAL SYSTEMS -- Chapter 4: THE PROVABLY RECURSIVE FUNCTIONS OF ARITHMETIC -- 4.1. Primitive recursion and IΣı -- 4.1.1. Primitive recursive functions are provable in IΣı. -- 4.1.2. IΣı-provable functions are primitive recursive. -- 4.2. εο-recursion in Peano arithmetic -- 4.2.1. Ordinals below εο. -- 4.2.2. Introducing the fast-growing hierarchy. -- 4.2.3. α-recursion and εο-recursion. -- 4.2.4. Provable recursiveness of Hα and Fα. -- 4.2.5. Gentzen's theorem on transfinite induction in PA. -- 4.3. Ordinal bounds for provable recursion in PA -- 4.3.1. The infinitary system n : N α Γ. -- 4.3.2. Embedding of PA. -- 4.3.3. Cut elimination. -- 4.3.4. The classification theorem. -- 4.4. Independence results for PA -- 4.4.1. Goodstein sequences. -- 4.4.2. The modified finite Ramsey theorem. -- 4.5. Notes -- Chapter 5: ACCESSIBLE RECURSIVE FUNCTIONS, ID<∞ AND Π11-CA0 -- 5.1. The subrecursive stumblingblock -- 5.1.1. An old result of Myhill, Routledge and Liu. -- 5.1.2. Subrecursive hierarchies and constructive ordinals. -- 5.1.3. Incompleteness along Π11-paths through W. -- 5.2. Accessible recursive functions -- 5.2.1. Structured tree ordinals. 
938 |a Coutts Information Services  |b COUT  |n 22281879 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL833389 
938 |a ebrary  |b EBRY  |n ebr10533191 
938 |a EBSCOhost  |b EBSC  |n 416700 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 357983 
938 |a YBP Library Services  |b YANK  |n 7429414 
994 |a 92  |b IZTAP