|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn775869745 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120209s2011 enk ob 001 0 eng d |
040 |
|
|
|a MHW
|b eng
|e pn
|c MHW
|d EBLCP
|d YDXCP
|d IDEBK
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCF
|d N$T
|d VPI
|d UIU
|d CAMBR
|d COO
|d E7B
|d CDX
|d OCLCQ
|d S3O
|d OCLCQ
|d OTZ
|d OCLCQ
|d MERUC
|d ZCU
|d ICG
|d OCLCQ
|d TKN
|d DKC
|d AGLDB
|d SNK
|d BTN
|d MHW
|d INTCL
|d AUW
|d AU@
|d OCLCQ
|d M8D
|d OCLCQ
|d S8J
|d G3B
|d OCLCQ
|d STF
|d ESU
|d RC0
|d LUN
|d DGN
|d CN6UV
|d AJS
|d SDF
|d HS0
|d OCLCQ
|d OCLCO
|d CNNOR
|d RDF
|d SGP
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|
066 |
|
|
|c Grek
|c (S
|
019 |
|
|
|a 776895890
|a 785781936
|a 794544280
|a 994934040
|a 1167285037
|a 1264916582
|
020 |
|
|
|a 9781139220200
|
020 |
|
|
|a 1139220209
|
020 |
|
|
|a 9786613579836
|
020 |
|
|
|a 6613579831
|
020 |
|
|
|a 9781139223638
|q (electronic bk.)
|
020 |
|
|
|a 1139223631
|q (electronic bk.)
|
020 |
|
|
|a 9781139031905
|q (electronic bk.)
|
020 |
|
|
|a 1139031902
|q (electronic bk.)
|
020 |
|
|
|a 9781139217101
|
020 |
|
|
|a 1139217100
|
020 |
|
|
|z 9780521517690
|
020 |
|
|
|z 0521517699
|
029 |
1 |
|
|a CHNEW
|b 000618828
|
029 |
1 |
|
|a DEBSZ
|b 372905102
|
029 |
1 |
|
|a DEBSZ
|b 379325888
|
035 |
|
|
|a (OCoLC)775869745
|z (OCoLC)776895890
|z (OCoLC)785781936
|z (OCoLC)794544280
|z (OCoLC)994934040
|z (OCoLC)1167285037
|z (OCoLC)1264916582
|
050 |
|
4 |
|a QA267 .Sch889 2012
|
072 |
|
7 |
|a PBCD
|2 bicssc
|
072 |
|
7 |
|a COM
|x 037000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Schwichtenberg, Helmut.
|
245 |
1 |
0 |
|a Proofs and Computations.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (482 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Perspectives in Logic
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a This major graduate-level text provides a detailed, self-contained coverage of proof theory.
|
504 |
|
|
|a Includes bibliographical references (pages 431-455) and index.
|
505 |
8 |
|
|6 880-01
|a 6.5.3. Dense and separating sets. -- 6.6. Notes -- Chapter 7: EXTRACTING COMPUTATIONAL CONTENT FROM PROOFS -- 7.1. A theory of computable functionals -- 7.1.1. Brouwer-Heyting-Kolmogorov and Gödel. -- 7.1.2. Formulas and predicates. -- 7.1.3. Equalities. -- 7.1.4. Existence, conjunction and disjunction. -- 7.1.5. Further examples. -- 7.1.6. Totality and induction. -- 7.1.7. Coinductive definitions. -- 7.2. Realizability interpretation -- 7.2.1. An informal explanation. -- 7.2.2. Decorating ₂!and
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Computable functions.
|
650 |
|
0 |
|a Machine theory.
|
650 |
|
0 |
|a Proof theory.
|
650 |
|
4 |
|a Machine theory.
|
650 |
|
6 |
|a Fonctions calculables.
|
650 |
|
6 |
|a Théorie des automates.
|
650 |
|
6 |
|a Théorie de la preuve.
|
650 |
|
7 |
|a COMPUTERS
|x Machine Theory.
|2 bisacsh
|
650 |
0 |
7 |
|a Demostración, Teoría de la
|2 embucm
|
650 |
|
7 |
|a Computable functions
|2 fast
|
650 |
|
7 |
|a Machine theory
|2 fast
|
650 |
|
7 |
|a Proof theory
|2 fast
|
700 |
1 |
|
|a Wainer, S. S.
|
776 |
0 |
8 |
|i Print version:
|z 9780521517690
|
830 |
|
0 |
|a Perspectives in logic.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=833389
|z Texto completo
|
880 |
8 |
|
|6 505-01/Grek
|a 5.2.2. Collapsing properties of G. -- 5.2.3. The functors G, B and ϕ. -- 5.2.4. The accessible recursive functions. -- 5.3. Proof-theoretic characterizations of accessibility -- 5.3.1. Finitely iterated inductive definitions. -- 5.3.2. The infinitary system IDk(W)∞. -- 5.3.3. Embedding IDk(W) into IDk(W)∞. -- 5.3.4. Ordinal analysis of IDk. -- 5.3.5. Accessible = provably recursive in ID<∞. -- 5.3.6. Provable ordinals of IDk(W). -- 5.4. ID<∞ and Π11-CA0 -- 5.4.1. Embedding ID<(W) in Π11-CA0. -- 5.4.2. Reduction ofΠ11-forms toWi sets. -- 5.4.3. Conservativity of Π11-CA0 over ID<∞(W). -- 5.5. An independence result: extended Kruskal theorem -- 5.5.1. φ-terms, trees and i-sequences. -- 5.5.2. The computation sequence is bad. -- 5.6. Notes -- Part 3: CONSTRUCTIVE LOGIC AND COMPLEXITY -- Chapter 6: COMPUTABILITY IN HIGHER TYPES -- 6.1. Abstract computability via information systems -- 6.1.1. Information systems. -- 6.1.2. Domains with countable basis. -- 6.1.3. Function spaces. -- 6.1.4. Algebras and types. -- 6.1.5. Partial continuous functionals. -- 6.1.6. Constructors as continuous functions. -- 6.1.7. Total and cototal ideals in a finitary algebra. -- 6.2. Denotational and operational semantics -- 6.2.1. Structural recursion operators and Gödel's T. -- 6.2.2. Conversion. -- 6.2.3. Corecursion. -- 6.2.4. A common extension T+ of Gödel's T and Plotkin's PCF. -- 6.2.5. Confluence. -- 6.2.6. Ideals as denotation of terms. -- 6.2.7. Preservation of values. -- 6.2.8. Operational semantics -- adequacy. -- 6.3. Normalization -- 6.3.1. Strong normalization. -- 6.3.2. Normalization by evaluation. -- 6.4. Computable functionals -- 6.4.1. Fixed point operators. -- 6.4.2. Rules for pcond, ∃ and valmax. -- 6.4.3. Plotkin's definability theorem. -- 6.5. Total functionals -- 6.5.1. Total and structure-total ideals. -- 6.5.2. Equality for total functionals.
|
880 |
0 |
|
|6 505-00/(S
|a Cover -- Proofs and Computations -- PERSPECTIVES IN LOGIC -- Title -- Copyright -- Dedication -- CONTENTS -- PREFACE -- PRELIMINARIES -- Part 1: BASIC PROOF THEORY AND COMPUTABILITY -- Chapter 1: LOGIC -- 1.1. Natural deduction -- 1.1.1. Terms and formulas. -- 1.1.2. Substitution, free and bound variables. -- 1.1.3. Subformulas. -- 1.1.4. Examples of derivations. -- 1.1.5. Introduction and elimination rules for → and ∀. -- 1.1.6. Properties of negation. -- 1.1.7. Introduction and elimination rules for disjunction ∨, conjunction ∧ and existence ∃. -- 1.1.8. Intuitionistic and classical derivability. -- 1.1.9. Gödel-Gentzen translation. -- 1.2. Normalization -- 1.2.1. The Curry-Howard correspondence. -- 1.2.2. Strong normalization. -- 1.2.3. Uniqueness of normal forms. -- 1.2.4. The structure of normal derivations. -- 1.2.5. Normal vs. non-normal derivations. -- 1.2.6. Conversions for ∨, ∧, ∃. -- 1.2.7. Strong normalization for β-, π- and σ-conversions. -- 1.2.8. The structure of normal derivations, again. -- 1.3. Soundness and completeness for tree models -- 1.3.1. Tree models. -- 1.3.2. Covering lemma. -- 1.3.3. Soundness. -- 1.3.4. Counter models. -- 1.3.5. Completeness. -- 1.4. Soundness and completeness of the classical fragment -- 1.4.1. Models. -- 1.4.2. Soundness of classical logic. -- 1.4.3. Completeness of classical logic. -- 1.4.4. Compactness and Löwenheim-Skolem theorems. -- 1.5. Tait calculus -- 1.6. Notes -- Chapter 2: RECURSION THEORY -- 2.1. Register machines -- 2.1.1. Programs. -- 2.1.2. Program constructs. -- 2.1.3. Register machine computable functions. -- 2.2. Elementary functions -- 2.2.1. Definition and simple properties. -- 2.2.2. Elementary relations. -- 2.2.3. The class ε. -- 2.2.4. Closure properties of ε. -- 2.2.5. Coding finite lists. -- 2.3. Kleene's normal form theorem -- 2.3.1. Program numbers. -- 2.3.2. Normal form.
|
880 |
8 |
|
|6 505-00/(S
|a 2.3.3. Στ̔̈ΒΑ·1-definable relations and μ-recursive functions. -- 2.3.4. Computable functions. -- 2.3.5. Undecidability of the halting problem. -- 2.4. Recursive definitions -- 2.4.1. Least fixed points of recursive definitions. -- 2.4.2. The principles of finite support and monotonicity, and the effective index property. -- 2.4.3. Recursion theorem. -- 2.4.4. Recursive programs and partial recursive functions. -- 2.4.5. Relativized recursion. -- 2.5. Primitive recursion and for-loops -- 2.5.1. Primitive recursive functions. -- 2.5.2. Loop-programs. -- 2.5.3. Reduction to primitive recursion. -- 2.5.4. A complexity hierarchy for Prim. -- 2.6. The arithmetical hierarchy -- 2.6.1. Kleene's second recursion theorem. -- 2.6.2. Characterization of Σ01-definable and recursive relations. -- 2.6.3. Arithmetical relations. -- 2.6.4. Closure properties. -- 2.6.6. Σ0r-complete relations. -- 2.7. The analytical hierarchy -- 2.7.1. Analytical relations. -- 2.7.2. Closure properties. -- 2.7.3. Universal Σ1r+1-definable relations. -- 2.7.4. Σ1r-complete relations. -- 2.8. Recursive type-2 functionals and well-foundedness -- 2.8.1. Computation trees. -- 2.8.2. Ordinal assignments -- recursive ordinals. -- 2.8.3. A hierarchy of total recursive functionals. -- 2.9. Inductive definitions -- 2.9.1. Monotone operators. -- 2.9.2. Induction and coinduction principles. -- 2.9.3. Approximation of the least and greatest fixed point. -- 2.9.4. Continuous operators. -- 2.9.5. The accessible part of a relation. -- 2.9.6. Inductive definitions over N. -- 2.9.7. Definability of least fixed points for monotone operators. -- 2.9.8. Some counter examples. -- 2.10. Notes -- Chapter 3: GÖDEL'S THEOREMS -- 3.1. IΔ0(exp) -- 3.1.1. Basic arithmetic in IΔ0(exp). -- 3.1.2. Provable recursion in IΔ0(exp). -- 3.1.3. Proof-theoretic characterization. -- 3.2. Gödel numbers.
|
880 |
8 |
|
|6 505-00/(S
|a 3.2.1. Gödel numbers of terms, formulas and derivations. -- 3.2.2. Elementary functions on Gödel numbers. -- 3.2.3. Axiomatized theories. -- 3.2.4. Undefinability of the notion of truth. -- 3.3. The notion of truth in formal theories -- 3.3.1. Representable relations and functions. -- 3.3.2. Undefinability of the notion of truth in formal theories. -- 3.4. Undecidability and incompleteness -- 3.4.1. Undecidability. -- 3.4.2. Incompleteness. -- 3.5. Representability -- 3.5.1. Weak arithmetical theories. -- 3.5.2. Robinson's theory Q. -- 3.5.3. Σ1ı-formulas. -- 3.6. Unprovability of consistency -- 3.6.1. Σ1ı-completeness. -- 3.6.2. Derivability conditions. -- 3.7. Notes -- Part 2: PROVABLE RECURSION IN CLASSICAL SYSTEMS -- Chapter 4: THE PROVABLY RECURSIVE FUNCTIONS OF ARITHMETIC -- 4.1. Primitive recursion and IΣı -- 4.1.1. Primitive recursive functions are provable in IΣı. -- 4.1.2. IΣı-provable functions are primitive recursive. -- 4.2. εο-recursion in Peano arithmetic -- 4.2.1. Ordinals below εο. -- 4.2.2. Introducing the fast-growing hierarchy. -- 4.2.3. α-recursion and εο-recursion. -- 4.2.4. Provable recursiveness of Hα and Fα. -- 4.2.5. Gentzen's theorem on transfinite induction in PA. -- 4.3. Ordinal bounds for provable recursion in PA -- 4.3.1. The infinitary system n : N α Γ. -- 4.3.2. Embedding of PA. -- 4.3.3. Cut elimination. -- 4.3.4. The classification theorem. -- 4.4. Independence results for PA -- 4.4.1. Goodstein sequences. -- 4.4.2. The modified finite Ramsey theorem. -- 4.5. Notes -- Chapter 5: ACCESSIBLE RECURSIVE FUNCTIONS, ID<∞ AND Π11-CA0 -- 5.1. The subrecursive stumblingblock -- 5.1.1. An old result of Myhill, Routledge and Liu. -- 5.1.2. Subrecursive hierarchies and constructive ordinals. -- 5.1.3. Incompleteness along Π11-paths through W. -- 5.2. Accessible recursive functions -- 5.2.1. Structured tree ordinals.
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 22281879
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL833389
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10533191
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 416700
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 357983
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7429414
|
994 |
|
|
|a 92
|b IZTAP
|