Cargando…

Heat conduction.

"This book supplies the long awaited revision of the bestseller on heat conduction, replacing some of the coverage of numerical methods with content on micro- and nano-scale heat transfer. Extensive problems, cases, and examples have been thoroughly updated, and a solutions manual is available&...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hahn, David W., 1964-
Otros Autores: Özışık, M. Necati
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley, 2012.
Edición:3rd ed. /
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Heat Conduction Fundamentals
  • 2. Orthogonal Functions, Boundary Value Problems, and the Fourier Series
  • 3. Separation of Variables in the Rectangular Coordinate System
  • 4. Separation of Variables in the Cylindrical Coordinate System
  • 5. Separation of Variables in the Spherical Coordinate System
  • 6. Solution of the Heat Equation for Semi-Infinite and Infinite Domains
  • 7. Use of Duhamel's Theorem
  • 8. Use of Green's Function for Solution of Heat Conduction Problems
  • 9. Use of the Laplace Transform
  • 10. One-Dimensional Composite Medium
  • 11. Moving Heat Source Problems
  • 12. Phase-Change Problems
  • 13. Approximate Analytic Methods
  • 14. Integral Transform Technique
  • 15. Heat Conduction in Anisotropic Solids
  • 16. Introduction to Microscale Heat Conduction.
  • 1. Heat Conduction Fundamentals
  • 1.1. The Heat Flux
  • 1.2. Thermal Conductivity
  • 1.3. Differential Equation of Heat Conduction
  • 1.4. Fourier's Law and the Heat Equation in Cylindrical and Spherical Coordinate Systems
  • 1.5. General Boundary Conditions and Initial Condition for the Heat Equation
  • 1.6. Nondimensional Analysis of the Heat Conduction Equation
  • 1.7. Heat Conduction Equation for Anisotropic Medium
  • 1.8. Lumped and Partially Lumped Formulation
  • 2. Orthogonal Functions, Boundary Value Problems, and the Fourier Series
  • 2.1. Orthogonal Functions
  • 2.2. Boundary Value Problems
  • 2.3. The Fourier Series
  • 2.4. Computation of Eigenvalues
  • 2.5. Fourier Integrals
  • 3. Separation of Variables in the Rectangular Coordinate System
  • 3.1. Basic Concepts in the Separation of Variables Method
  • 3.2. Generalization to Multidimensional Problems
  • 3.3. Solution of Multidimensional Homogenous Problems
  • 3.4. Multidimensional Nonhomogeneous Problems: Method of Superposition
  • 3.5. Product Solution
  • 3.6. Capstone Problem
  • 4. Separation of Variables in the Cylindrical Coordinate System
  • 4.1. Separation of Heat Conduction Equation in the Cylindrical Coordinate System
  • 4.2. Solution of Steady-State Problems
  • 4.3. Solution of Transient Problems
  • 4.4. Capstone Problem
  • 5. Separation of Variables in the Spherical Coordinate System
  • 5.1. Separation of Heat Conduction Equation in the Spherical Coordinate System
  • 5.2. Solution of Steady-State Problems
  • 5.3. Solution of Transient Problems
  • 5.4. Capstone Problem
  • 6. Solution of the Heat Equation for Semi-Infinite and Infinite Domains
  • 6.1. One-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Cartesian Coordinate System
  • 6.2. Multidimensional Homogeneous Problems in a Semi-Infinite Medium for the Cartesian Coordinate System
  • 6.3. One-Dimensional Homogeneous Problems in An Infinite Medium for the Cartesian Coordinate System
  • 6.4. One-Dimensional homogeneous Problems in a Semi-Infinite Medium for the Cylindrical Coordinate System
  • 6.5. Two-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Cylindrical Coordinate System
  • 6.6. One-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Spherical Coordinate System
  • 7. Use of Duhamel's Theorem
  • 7.1. Development of Duhamel's Theorem for Continuous Time-Dependent Boundary Conditions
  • 7.2. Treatment of Discontinuities
  • 7.3. General Statement of Duhamel's Theorem
  • 7.4. Applications of Duhamel's Theorem
  • 7.5. Applications of Duhamel's Theorem for Internal Energy Generation
  • 8. Use of Green's Function for Solution of Heat Conduction Problems
  • 8.1. Green's Function Approach for Solving Nonhomogeneous Transient Heat Conduction
  • 8.2. Determination of Green's Functions
  • 8.3. Representation of Point, Line, and Surface Heat Sources with Delta Functions
  • 8.4. Applications of Green's Function in the Rectangular Coordinate System
  • 8.5. Applications of Green's Function in the Cylindrical Coordinate System
  • 8.6. Applications of Green's Function in the Spherical Coordinate System
  • 8.7. Products of Green's Functions
  • 9. Use of the Laplace Transform
  • 9.1. Definition of Laplace Transformation
  • 9.2. Properties of Laplace Transform
  • 9.3. Inversion of Laplace Transform Using the Inversion Tables
  • 9.4. Application of the Laplace Transform in the Solution of Time-Dependent Heat Conduction Problems
  • 9.5. Approximations for Small Times
  • 10. One-Dimensional Composite Medium
  • 10.1. Mathematical Formulation of One-Dimensional Transient Heat Conduction in a Composite Medium
  • 10.2. Transformation of Nonhomogeneous Boundary Conditions into Homogeneous Ones
  • 10.3. Orthogonal Expansion Technique for Solving M-Layer Homogeneous Problems
  • 10.4. Determination of Eigenfunctions and Eigenvalues
  • 10.5. Applications of Orthogonal Expansion Technique
  • 10.6. Green's Function Approach for Solving Nonhomogeneous Problems
  • 10.7. Use of Laplace Transform for Solving Semi-Infinite and Infinite Medium Problems
  • 11. Moving Heat Source Problems
  • 11.1. Mathematical Modeling of Moving Heat Source Problems
  • 11.2. One-Dimensional Quasi-Stationary Plane Heat Source Problem
  • 11.3. Two-Dimensional Quasi-Stationary Line Heat Source Problem
  • 11.4. Two-Dimensional Quasi-Stationary Ring Heat Source Problem
  • 12. Phase-Change Problems
  • 12.1. Mathematical Formulation of Phase-Change Problems
  • 12.2. Exact Solution of Phase-Change Problems
  • 12.3. Integral Method of Solution of Phase-Change Problems
  • 12.4. Variable Time Step Method for Solving Phase-Change Problems: A Numerical Solution
  • 12.5. Enthalpy Method for Solution of Phase-Change Problems: A Numerical Solution
  • 13. Approximate Analytic Methods
  • 13.1. Integral Method: Basic Concepts
  • 13.2. Integral Method: Application to Linear Transient Heat Conduction in a Semi-Infinite Medium
  • 13.3. Integral Method: Application to Nonlinear Transient Heat Conduction
  • 13.4. Integral Method: Application to a Finite Region
  • 13.5. Approximate Analytic Methods of Residuals
  • 13.6. The Galerkin Method
  • 13.7. Partial Integration
  • 13.8. Application to Transient Problems
  • 14. Integral Transform Technique
  • 14.1. Use of Integral Transform in the Solution of Heat Conduction Problems
  • 14.2. Applications in the Rectangular Coordinate System
  • 14.3. Applications in the Cylindrical Coordinate System
  • 14.4. Applications in the Spherical Coordinate System
  • 14.5. Applications in the Solution of Steady-state problems
  • 15. Heat Conduction in Anisotropic Solids
  • 15.1. Heat Flux for Anisotropic Solids
  • 15.2. Heat Conduction Equation for Anisotropic Solids
  • 15.3. Boundary Conditions
  • 15.4. Thermal Resistivity Coefficients
  • 15.5. Determination of Principal Conductivities and Principal Axes
  • 15.6. Conductivity Matrix for Crystal Systems
  • 15.7. Transformation of Heat Conduction Equation for Orthotropic Medium
  • 15.8. Some Special Cases
  • 15.9. Heat Conduction in an Orthotropic Medium
  • 15.10. Multidimensional Heat Conduction in an Anisotropic Medium
  • 16. Introduction to Microscale Heat Conduction
  • 16.1. Microstructure and Relevant Length Scales
  • 16.2. Physics of Energy Carriers
  • 16.3. Energy Storage and Transport
  • 16.4. Limitations of Fourier's Law and the First Regime of Microscale Heat Transfer
  • 16.5. Solutions and Approximations for the First Regime of Microscale Heat Transfer
  • 16.6. Second and Third Regimes of Microscale Heat Transfer
  • 16.7. Summary Remarks
  • Appendix I. Physical Properties
  • Appendix II. Roots of Transcendental Equations
  • Appendix III. Error Functions
  • Appendix IV. Bessel Functions
  • Appendix V. Numerical Values of Legendre Polynomials of the First Kind
  • Appendix VI. Properties of Delta Functions.