Cargando…

A Guide to Plane Algebraic Curves /

This book can be used in a one semester undergraduate course or senior capstone course, or as a useful companion in studying algebraic geometry at the graduate level. This Guide is a friendly introduction to plane algebraic curves. It emphasizes geometry and intuition, and the presentation is kept c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kendig, Keith
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Colección:Dolciani mathematical expositions.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn775429175
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111001s2011 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d YDXCP  |d OCLCQ  |d EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DKC  |d OCLCQ  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 923220487  |a 929120468 
020 |a 9781614442035  |q (ebook) 
020 |a 1614442037  |q (ebook) 
029 1 |a DEBBG  |b BV043624302 
029 1 |a DEBBG  |b BV044103528 
029 1 |a DEBSZ  |b 449725464 
035 |a (OCoLC)775429175  |z (OCoLC)923220487  |z (OCoLC)929120468 
050 4 |a QA567 ǂb K46 2011eb 
082 0 4 |a 516.352 
049 |a UAMI 
100 1 |a Kendig, Keith. 
245 1 2 |a A Guide to Plane Algebraic Curves /  |c Keith Kendig. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Dolciani Mathematical Expositions ;  |v v. 46 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Cover -- copyright page -- title page -- Preface -- Itâ€?s for. . . -- What this book is, and what it isnâ€?t. -- What are the prerequisites for this book? -- Why should I be interested, in algebraic curves? -- A Bit of Perspective. -- The Bookâ€?s Story Line . . . -- Many thanks to . . . -- Contents -- CHAPTER 1 A Gallery of Algebraic Curves -- 1.1 Curves of Degree One and Two -- Degree One -- Degree Two -- 1.2 Curves of Degree Three and Higher -- Degree Three -- Higher Degrees -- 1.3 Six Basic Cubics -- 1.4 Some Curves in Polar Coordinates 
505 8 |a Rectangular versus Polar CoordinatesAlgebraic versus Not Algebraic -- The Oppositeness Idea -- 1.5 Parametric Curves -- 1.6 The Resultant -- 1.7 Back to an Example -- 1.8 Lissajous Figures -- 1.9 Morphing Between Curves -- 1.10 Designer Curves -- Linkages -- CHAPTER 2 Points at Infinity -- 2.1 Adjoining Points at Infinity -- 2.2 Examples -- 2.3 A Basic Picture -- 2.4 Basic Definitions -- 2.5 Further Examples -- CHAPTER 3 From Real to Complex -- 3.1 Definitions -- 3.2 The Idea of Multiplicity; Examples -- 3.3 A Reality Check 
505 8 |a 3.4 A Factorization Theorem for Polynomials in C[x, y]3.5 Local Parametrizations of a Plane Algebraic Curve -- 3.6 Definition of Intersection Multiplicity for Two Branches -- 3.7 An Example -- 3.8 Multiplicity at an Intersection Point of Two Plane Algebraic Curves -- 3.9 Intersection Multiplicity Without Parametrizations -- 3.10 Bézoutâ€?s theorem -- 3.11 Bézoutâ€?s theorem Generalizes the Fundamental Theorem of Algebra -- 3.12 An Application of Bézoutâ€?s theorem: Pascalâ€?s theorem -- CHAPTER 4 Topology of AlgebraicCurves in P^2(C) -- 4.1 Introduction 
505 8 |a 4.2 Connectedness4.3 Algebraic Curves are Connected -- 4.4 Orientable Two-Manifolds -- 4.5 Nonsingular Curves are Two-Manifolds -- 4.6 Algebraic Curves are Orientable -- 4.7 The Genus Formula -- CHAPTER 5 Singularities -- 5.1 Introduction -- 5.2 Definitions and Examples -- 5.3 Singularities at Infinity -- 5.4 Nonsingular Projective Curves -- 5.5 Singularities and Polynomial Degree -- 5.6 Singularities and Genus -- 5.7 A More General Genus Formula -- 5.8 Non-Ordinary Singularities -- 5.9 Further Examples -- Curves of the Form y^m = x^ n 
505 8 |a An Example with Repeated Tangent Lines5.10 Singularities versus Doing Math on Curves -- 5.11 The Function Field of an Irreducible Curve -- 5.12 Birational Equivalence -- 5.13 Examples of Birational Equivalence -- 5.14 Space-Curve Models -- 5.15 Resolving a Higher-OrderOrdinary Singularity -- 5.16 Examples of Resolving an Ordinary Singularity -- 5.17 Resolving Several Ordinary Singularities -- 5.18 Quadratic Transformations -- CHAPTER 6 The Big Three: C, K, S -- 6.1 Function Fields -- 6.2 Compact Riemann Surfaces -- 6.3 Projective Plane Curves 
520 |a This book can be used in a one semester undergraduate course or senior capstone course, or as a useful companion in studying algebraic geometry at the graduate level. This Guide is a friendly introduction to plane algebraic curves. It emphasizes geometry and intuition, and the presentation is kept concrete. You'll find an abundance of pictures and examples to help develop your intuition about the subject, which is so basic to understanding and asking fruitful questions. Highlights of the elementary theory are covered, which for some could be an end in itself, and for others an invitation to investigate further. Proofs, when given, are mostly sketched, some in more detail, but typically with less. References to texts that provide further discussion are often included. Computer algebra software has made getting around in algebraic geometry much easier. Algebraic curves and geometry are now being applied to areas such as cryptography, complexity and coding theory, robotics, biological networks, and coupled dynamical systems. Algebraic curves were used in Andrew Wiles' proof of Fermat's Last Theorem, and to understand string theory, you need to know some algebraic geometry. There are other areas on the horizon for which the concepts and tools of algebraic curves and geometry hold tantalizing promise. This introduction to algebraic curves will be appropriate for a wide segment of scientists and engineers wanting an entrance to this burgeoning subject. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Curves, Plane. 
650 0 |a Curves, Algebraic. 
650 6 |a Courbes planes. 
650 6 |a Courbes algébriques. 
650 7 |a Curves, Algebraic  |2 fast 
650 7 |a Curves, Plane  |2 fast 
776 0 8 |i Print version:  |a Kendig, Keith.  |t Guide to Plane Algebraic Curves.  |d Washington : Mathematical Association of America, ©2014  |z 9780883853535 
830 0 |a Dolciani mathematical expositions. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330373  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330373 
938 |a YBP Library Services  |b YANK  |n 7292866 
994 |a 92  |b IZTAP