Cargando…

When Less is More : Visualizing Basic Inequalities /

The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Alsina, Claudi, Nelsen, Roger B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Dolciani mathematical expositions.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn775429168
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111104s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d N$T  |d OCLCQ  |d YDXCP  |d OCLCQ  |d OCLCF  |d CAMBR  |d JSTOR  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d JBG  |d OCLCQ  |d STF  |d DKC  |d REC  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 923220486  |a 929120460 
020 |a 9781614442028  |q (electronic bk.) 
020 |a 1614442029  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043076426 
029 1 |a DEBBG  |b BV043624301 
029 1 |a DEBBG  |b BV044103527 
029 1 |a DEBSZ  |b 421421193 
029 1 |a DEBSZ  |b 449725456 
029 1 |a GBVCP  |b 803884281 
029 1 |a AU@  |b 000066751818 
035 |a (OCoLC)775429168  |z (OCoLC)923220486  |z (OCoLC)929120460 
037 |a 22573/ctt69tzbq  |b JSTOR 
050 4 |a QA295 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 515.26  |2 22 
049 |a UAMI 
245 0 0 |a When Less is More :  |b Visualizing Basic Inequalities /  |c Claudi Alsina, Roger B. Nelsen. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Dolciani Mathematical Expositions ;  |v v. 36 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Cover -- copyright page -- title page -- Contents -- Preface -- Introduction -- Inequalities as a field of study -- Inequalities in the classroom -- CHAPTER 1 Representing positive numbers as lengths of segments -- 1.1 Inequalities associated with triangles -- 1.2 Polygonal paths -- 1.3 n-gons inside m-gons -- 1.4 The arithmetic mean-geometric mean inequality -- 1.5 More inequalities for means -- 1.6 The Ravi substitution -- 1.7 Comparing graphs of functions -- 1.8 Challenges -- CHAPTER 2 Representing positive numbers as areas or volumes 
505 8 |a 2.1 Three examples2.2 Chebyshevâ€?s inequality -- 2.3 The AM-GM inequality for three numbers -- 2.4 Guhaâ€?s inequality -- 2.5 The AM-GM inequality for n numbers -- 2.6 The HM-AM-GM-RMS inequality for nnumbers -- 2.7 The mediant property and Simpsonâ€?s paradox -- 2.8 Chebyshevâ€?s inequality revisited -- 2.9 Schurâ€?s inequality -- 2.10 Challenges -- CHAPTER 3 Inequalities and the existence of triangles -- 3.1 Inequalities and the altitudes of a triangle -- A triangle and its altitudes -- Existence of a triangle given a, b, and h_a 
505 8 |a Existence of a triangle given a, h_b, and h_cMore inequalities for the three altitudes -- Altitudes, sides and angles -- 3.2 Inequalities and the medians of a triangle -- Existence of a triangle given m_a, m_b, and m_c -- Existence of a triangle given a, b, and m_a -- Existence of a triangle given a, b, and m_c -- Existence of a triangle given a, m_a, and m_b -- 3.3 Inequalities and the angle-bisectors of a triangle -- Existence of a triangle given a, h_a, and w_a -- Existence of a triangle given a, h_b, and w_c -- Ordering of sides and angle-bisectors 
505 8 |a 3.4 The Steiner-Lehmus theorem3.5 Challenges -- CHAPTER 4 Using incircles and circumcircles 
520 |a The proofs in When Less is More are in the spirit of proofs without words, though most require at least a few words. The first inequalities presented in the book, such as the inequalities between the harmonic, geometric, and arithmetic mean, are familiar from analysis, but are given geometric proofs. The second and largest set of inequalities are geometric both in their statements and in their proofs. Toward the end of the book some inequalities are more analytical in their statements as well as their proofs--From publisher description. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Inequalities (Mathematics) 
650 0 |a Visualization. 
650 0 |a Geometrical drawing. 
650 6 |a Inégalités (Mathématiques) 
650 6 |a Visualisation. 
650 6 |a Dessin géométrique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometrical drawing  |2 fast 
650 7 |a Inequalities (Mathematics)  |2 fast 
650 7 |a Visualization  |2 fast 
700 1 |a Alsina, Claudi. 
700 1 |a Nelsen, Roger B. 
776 0 8 |i Print version:  |a Alsina, Claudi.  |t When Less Is More : Visualizing Basic Inequalities.  |d Washington : Mathematical Association of America, ©2014  |z 9780883853429 
830 0 |a Dolciani mathematical expositions. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330372  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330372 
938 |a EBSCOhost  |b EBSC  |n 450272 
938 |a YBP Library Services  |b YANK  |n 7349881 
994 |a 92  |b IZTAP