Cargando…

Random Walks and Electric Networks /

Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and Electric N...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Doyle, Peter G., Snell, J. Laurie
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Carus.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn775429149
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111024s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d OCLCQ  |d CAMBR  |d JSTOR  |d OCLCF  |d YDXCP  |d OCLCQ  |d EBLCP  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d OCLCO  |d RDF  |d OCLCQ  |d HF9 
019 |a 903621732  |a 923220476  |a 929120250 
020 |a 9781614440222  |q (electronic bk.) 
020 |a 1614440220  |q (electronic bk.) 
029 1 |a DEBBG  |b BV044103501 
035 |a (OCoLC)775429149  |z (OCoLC)903621732  |z (OCoLC)923220476  |z (OCoLC)929120250 
037 |a 22573/ctt57mkj3  |b JSTOR 
050 4 |a QA274.73 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a SCI021000  |2 bisacsh 
082 0 4 |a 519.2/82  |2 19 
049 |a UAMI 
245 0 0 |a Random Walks and Electric Networks /  |c Peter G. Doyle, J. Laurie Snell. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Carus ;  |v v. 22 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Front Cover -- Random Walks and Electric Networks -- Copyright Page -- Preface -- Contents -- Part I: Random Walks on Finite Networks -- Chapter 1. Random Walks in One Dimension -- 1.1. A random walk along Madison Avenue -- 1.2. The same problem as a penny matching game -- 1.3. The probability of winning: basic properties -- 1.4. An electric network problem: the same problem? -- 1.5. Harmonic functions in one dimension; the Uniqueness Principle -- 1.6. The solution as a fair game (martingale) -- Chapter 2. Random Walks in Two Dimensions -- 2.1. An example 
505 8 |a 2.2. Harmonic functions in two dimensions2.3. The Monte Carlo solution -- 2.4. The original Dirichlet problem; the method of relaxations -- 2.5. Solution by solving linear equations -- 2.6. Solution by the method of Markov chains -- Chapter 3. Random Walks on More General Networks -- 3.1. General resistor networks and reversible Markov chains -- 3.2. Voltages for general networks; probabilistic interpretation -- 3.3. Probabilistic interpretation of current -- 3.4. Effective resistance and the escape probability -- 3.5. Currents minimize energy dissipation 
505 8 |a Chapter 4. Rayleigh's Monotonicity Law4.1. Rayleigh's Monotonicity Law -- 4.2. A probabilistic explanation of the Monotonicity Law -- 4.3. A Markov chain proof of the Monotonicity Law -- Part II: Random Walks on Infinite Networks -- Chapter 5. Pólya's Recurrence Problem -- 5.1. Random walks on lattices -- 5.2. The question of recurrence -- 5.3. Polya's original question -- 5.4. Polya's Theorem: recurrence in the plane, transience in space -- 5.5. The escape probability as a limit of escape probabilities for finite graphs 
505 8 |a 5.6. Electrical formulation of the type problem5.7. One dimension is easy, but what about higher dimensions? -- 5.8. Getting around the lack of rotational symmetry of the lattice -- 5.9. Rayleigh: shorting shows recurrence in the plane, cutting shows transience in space -- Chapter 6. Rayleigh's Short-Cut Method -- 6.1. Shorting and cutting -- 6.2. The Shorting Law and the Cutting Law; Rayleigh's idea -- 6.3. The plane is easy -- 6.4. Space: searching for a residual network -- 6.5. Trees are easy to analyze -- 6.6. The full binary tree is too big 
505 8 |a 6.7. NT3: a three-dimensional tree6.8. NT3 has finite resistance -- 6.9. But does NT3 fit in the three-dimensional lattice? -- 6.10. What we have done; what we will do -- Chapter 7. The Classical Proofs of Pólya's Theorem -- 7.1. Recurrence is equivalent to an infinite expected number of returns -- 7.2. Simple random walk in one dimension -- 7.3. Simple random walk in two dimensions -- 7.4. Simple random walk in three dimensions -- 7.5. The probability of return in three dimensions: exact calculations 
520 |a Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and Electric Networks looks at the interplay of physics and mathematics in terms of an example ; the relation between elementary electric network theory and random walks ;where the mathematics involved is at the college level. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Random walks (Mathematics) 
650 0 |a Electric network topology. 
650 6 |a Marches aléatoires (Mathématiques) 
650 6 |a Réseaux électriques (Circuits)  |x Topologie. 
650 7 |a Electric network topology  |2 fast 
650 7 |a Random walks (Mathematics)  |2 fast 
700 1 |a Doyle, Peter G. 
700 1 |a Snell, J. Laurie. 
776 0 8 |i Print version:  |a Doyle, Peter G.  |t Random Walks and Electric Networks.  |d Washington : Mathematical Association of America, ©1984  |z 9780883850244 
830 0 |a Carus. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330334  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330334 
938 |a YBP Library Services  |b YANK  |n 7349879 
994 |a 92  |b IZTAP