Cargando…

Episodes in Nineteenth and Twentieth Century Euclidean Geometry /

Euclidean geometry was worked out by Euclid and his predecessors more than 2300 years ago and is studied today mostly as a background to other branches of mathematics. In fact, however, as Professor Honsberger masterfully demonstrates, geometry in the style of Euclid is still alive and well. Mathema...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Honsberger, Ross
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Anneli Lax new mathematical library.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn775429124
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111024s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d N$T  |d YDXCP  |d OCLCQ  |d OCLCF  |d CAMBR  |d OCLCQ  |d EBLCP  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d AGLDB  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 923220109  |a 929120349 
020 |a 9780883859513  |q (electronic bk.) 
020 |a 0883859513  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043076448 
029 1 |a DEBBG  |b BV044103552 
029 1 |a DEBSZ  |b 421416297 
029 1 |a GBVCP  |b 803884257 
035 |a (OCoLC)775429124  |z (OCoLC)923220109  |z (OCoLC)929120349 
050 4 |a QA471 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.2  |2 20 
049 |a UAMI 
100 1 |a Honsberger, Ross. 
245 1 0 |a Episodes in Nineteenth and Twentieth Century Euclidean Geometry /  |c Ross Honsberger. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Anneli Lax New Mathematical Library ;  |v v. 37 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Cover -- Title page -- copyright page -- 1. Cleavers and Splitters -- 2. The Orthocenter -- 3. On Triangles -- 4. On Quadrilaterals -- Exercise Set 4 -- 5. A Property of Triangles -- 1. The Property -- 2. The Simson Line -- 3. The Proof of the Property (John Rigby) -- 4. A Corollary -- 5. A Property of Parabolas -- 6. The Fuhrmann Circle -- 7. The Symmedian Point -- Section 1 -- 2. Isogonal Lines and Points -- Exercise -- 3. The Symmedians and the Symmedian Point K -- 4. Applications and Further Developments -- References 
505 8 |a Exercise Set 78. The Miquel Theorem -- Section 1 -- 2. The Theorem of Miquel -- 3. The Case of P_1, P_2, P_3 Collinear -- 4. Simson Lines -- 5. A Curious Angle Property -- 9. The Tucker Circles -- 1. Parallels and antiparallels -- 2. The Lemoine circles -- 3. The Tucker circles -- 4. The center of a Tucker circle lies on the line KO -- 5. The first Lemoine circle -- 6. The Taylor Circle -- Exercise Set 9 -- 10. The Brocards Points -- 1. The Brocard Points -- 2. The Brocard Angle -- Exercise -- Exercise -- 3. The Brocard Circle 
505 8 |a 4. The Brocard triangles5. The Steiner point and the Tarry point -- 6. A property relating K, G, Omega, Omega' -- 11. The Orthopole -- Section 1 -- Section 2 -- 3. The Rigby Point -- Exercise -- 12. On Cevians -- 1. Cevaâ€?s Theorem -- Section 2 -- Section 3 -- 4. Harukiâ€?s Cevian theorem for circles -- 13. The Theorem of Menelaus -- Section 1 -- 2. Applications -- Suggested Reading -- Solutions to the Exercises -- 1. Cleavers and Splitters -- 2. The Orthocenter -- 3. On Triangles -- 4. On Quadrilaterals -- 7. The Symmedian Point 
505 8 |a 9. The Tucker Circles11. The Orthopole -- Index 
520 |a Euclidean geometry was worked out by Euclid and his predecessors more than 2300 years ago and is studied today mostly as a background to other branches of mathematics. In fact, however, as Professor Honsberger masterfully demonstrates, geometry in the style of Euclid is still alive and well. Mathematicians have again been studying the properties of geometric figures from a synthetic point of view and have discovered many new and unexpected results which Euclid himself never found. And since all of us have studied Euclidean geometry, at least the ancient version, this book is easily accessible. Exercises with their solutions are included in the book. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geometry, Projective. 
650 6 |a Géométrie projective. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometry, Projective  |2 fast 
758 |i has work:  |a Episodes in nineteenth and twentieth century Euclidean geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGMHXP4drDtvwcqpwjrYvb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Honsberger, Ross.  |t Episodes in Nineteenth and Twentieth Century Euclidean Geometry.  |d Washington : Mathematical Association of America, ©1995  |z 9780883856390 
830 0 |a Anneli Lax new mathematical library. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330417  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330417 
938 |a EBSCOhost  |b EBSC  |n 453276 
938 |a YBP Library Services  |b YANK  |n 7433069 
994 |a 92  |b IZTAP