A Guide to Topology /
A Guide to Topology is an introduction to basic topology. It covers point-set topology as well as Moore-Smith convergence and function spaces. It treats continuity, compactness, the separation axioms, connectedness, completeness, the relative topology, the quotient topology, the product topology, an...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2012.
|
Colección: | Dolciani mathematical expositions.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface
- Contents
- 1 Fundamentals
- 1.1 What is Topology?
- 1.2 First Definitions
- 1.3 Mappings
- 1.4 The Separation Axioms
- 1.5 Compactness
- 1.6 Homeomorphisms
- 1.7 Connectedness
- 1.8 Path-Connectedness
- 1.9 Continua
- 1.10 Totally Disconnected Spaces
- 1.11 The Cantor Set
- 1.12 Metric Spaces
- 1.13 Metrizability
- 1.14 Baire�s Theorem
- 1.15 Lebesgue�s Lemma and Lebesgue Numbers
- 2 Advanced Properties of Topological Spaces
- 2.1 Basis and Subbasis
- 2.2 Product Spaces
- 2.3 Relative Topology
- 2.4 First Countable, Second Countable, and So Forth2.5 Compactifications
- 2.6 Quotient Topologies
- 2.7 Uniformities
- 2.8 Morse Theory
- 2.9 Proper Mappings
- 2.10 Paracompactness
- 3 Moore-Smith Convergence and Nets
- 3.1 Introductory Remarks
- 3.2 Nets
- 4 Function Spaces
- 4.1 Preliminary Ideas
- 4.2 The Topology of Pointwise Convergence
- 4.3 The Compact-Open Topology
- 4.4 Uniform Convergence
- 4.5 Equicontinuity and the Ascoli-Arzela Theorem
- 4.6 The Weierstrass Approximation Theorem
- Table of Notation
- Glossary