A Guide to Complex Variables /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2012.
|
Colección: | Dolciani mathematical expositions.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- A Guide to Complex Variables
- Preface
- Contents
- 1 The Complex Plane
- 1.1 Complex Arithmetic
- 1.1.1 The Real Numbers
- 1.1.2 The Complex Numbers
- 1.1.3 Complex Conjugate
- 1.1.4 Modulus of a Complex Number
- 1.1.5 The Topology of the Complex Plane
- 1.1.6 The Complex Numbers as a Field
- 1.1.7 The Fundamental Theorem of Algebra
- 1.2 The Exponential and Applications
- 1.2.1 The Exponential Function
- 1.2.2 The Exponential Using Power Series
- 1.2.3 Laws of Exponentiation
- 1.2.4 Polar Form of a Complex Number
- 1.2.5 Roots of Complex Numbers1.2.6 The Argument of a Complex Number
- 1.2.7 Fundamental Inequalities
- 1.3 Holomorphic Functions
- 1.3.1 Continuously Differentiable and Ck Functions
- 1.3.2 The Cauchy-Riemann Equations
- 1.3.3 Derivatives
- 1.3.4 Definition of Holomorphic Function
- 1.3.5 The Complex Derivative
- 1.3.6 Alternative Terminology for Holomorphic Functions
- 1.4 Holomorphic and Harmonic Functions
- 1.4.1 Harmonic Functions
- 1.4.2 How They are Related
- 2 Complex Line Integrals
- 2.1 Real and Complex Line Integrals
- 2.1.1 Curves
- 2.1.2 Closed Curves2.1.3 Differentiable and C^k Curves
- 2.1.4 Integrals on Curves
- 2.1.5 The Fundamental Theorem of Calculus along Curves
- 2.1.6 The Complex Line Integral
- 2.1.7 Properties of Integrals
- 2.2 Complex Differentiabilityand Conformality
- 2.2.1 Limits
- 2.2.2 Holomorphicity and the Complex Derivative
- 2.2.3 Conformality
- 2.3 The Cauchy Integral Formula and Theorem
- 2.3.1 The Cauchy Integral Theorem, Basic Form
- 2.3.2 The Cauchy Integral Formula
- 2.3.3 More General Forms of the Cauchy Theorems
- 2.3.4 Deformability of Curves
- 2.4 A Coda on the Limitations of The Cauchy Integral Formula3 Applications of the Cauchy Theory
- 3.1 The Derivatives of a Holomorphic Function
- 3.1.1 A Formula for the Derivative
- 3.1.2 The Cauchy Estimates
- 3.1.3 Entire Functions and Liouville�s Theorem
- 3.1.4 The Fundamental Theorem of Algebra
- 3.1.5 Sequences of Holomorphic Functions and their Derivatives
- 3.1.6 The Power Series Representation of a Holomorphic Function
- 3.2 The Zeros of a Holomorphic Function
- 3.2.1 The Zero Set of a Holomorphic Function
- 3.2.2 Discreteness of the Zeros of a Holomorphic Function3.2.3 Discrete Sets and Zero Sets
- 3.2.4 Uniqueness of Analytic Continuation
- 4 Isolated Singularities and Laurent Series
- 4.1 The Behavior of a Holomorphic Function near an Isolated Singularity
- 4.1.1 Isolated Singularities
- 4.1.2 A Holomorphic Function on a Punctured Domain
- 4.1.3 Classification of Singularities
- 4.1.4 Removable Singularities, Poles, and Essential Singularities
- 4.1.5 The Riemann Removable Singularities Theorem
- 4.1.6 The Casorati-Weierstrass Theorem