A Guide to Elementary Number Theory /
"A Guide to Elementary Number Theory is a 140-page exposition of the topics considered in a first course in number theory. It is intended for those who may have seen the material before but have half-forgotten it, and also for those who may have misspent their youth by not having a course in nu...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2012.
|
Colección: | Dolciani mathematical expositions.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction
- Contents
- 1 Greatest CommonDivisors
- 2 Unique Factorization
- 3 Linear DiophantineEquations
- 4 Congruences
- 5 Linear Congruences
- 6 The Chinese Remainder Theorem
- 7 Fermat�s Theorem
- 8 Wilson�s Theorem
- 9 The Number of Divisors of an Integer
- 10 The Sum of the Divisors of an Integer
- 11 Amicable Numbers
- 12 Perfect Numbers
- 13 Euler�s Theorem and Function
- 14 Primitive Rootsand Orders
- 15 Decimals
- 16 Quadratic Congruences
- 17 Gauss�s Lemma
- 18 The Quadratic Reciprocity Theorem19 The Jacobi Symbol
- 20 Pythagorean Triangles
- 21 x^4 + y*4 not= z^4
- 22 Sums of Two Squares
- 23 Sums of Three Squares
- 24 Sums of Four Squares
- 25 Waring�s Problem
- 26 Pell�s Equation
- 27 Continued Fractions
- 28 Multigrades
- 29 Carmichael Numbers
- 30 Sophie Germain Primes
- 31 The Group of Multiplicative Functions
- 32 Bounds for pi(x)
- 33 The Sum of the Reciprocals of the Primes
- 34 The Riemann Hypothesis
- 35 The Prime Number Theorem
- 36 The abc Conjecture
- 37 Factorization and Testing for Primes38 Algebraic and Transcendental Numbers
- 39 Unsolved Problems
- Index
- About the Author