Cargando…

A Guide to Real Variables /

A Guide to Real Variables provides aid and conceptual support for the student studying for the qualifying exam in real variables. Beginning with the foundations of the subject, the text moves rapidly but thoroughly through basic topics like completeness, convergence, sequences, series, compactness,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krantz, Steven G. (Steven George), 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Dolciani mathematical expositions.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn775428962
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 111104s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d N$T  |d YDXCP  |d OCLCQ  |d OCLCF  |d CAMBR  |d JSTOR  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d BNG  |d OCLCQ  |d VTS  |d AGLDB  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 923220588  |a 929120456  |a 1011023462 
020 |a 9780883859162  |q (electronic bk.) 
020 |a 0883859165  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043073169 
029 1 |a DEBBG  |b BV043624296 
029 1 |a DEBBG  |b BV044103524 
029 1 |a DEBSZ  |b 421421177 
029 1 |a DEBSZ  |b 449725405 
029 1 |a GBVCP  |b 803884117 
035 |a (OCoLC)775428962  |z (OCoLC)923220588  |z (OCoLC)929120456  |z (OCoLC)1011023462 
037 |a 22573/ctt69tzn2  |b JSTOR 
050 4 |a QA331.5 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.8  |2 22 
049 |a UAMI 
100 1 |a Krantz, Steven G.  |q (Steven George),  |d 1951-  |1 https://id.oclc.org/worldcat/entity/E39PBJw8VQ7cxG48KCfPym3RKd 
245 1 2 |a A Guide to Real Variables /  |c Steven G. Krantz. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Dolciani Mathematical Expositions ;  |v v. 38 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Contents -- Preface -- 1 Basics -- 1.1 Sets -- 1.2 Operations on Sets -- 1.3 Functions -- 1.4 Operations on Functions -- 1.5 Number Systems -- 1.5.1 The Real Numbers -- 1.6 Countable and Uncountable Sets -- 2 Sequences -- 2.1 Introduction to Sequences -- 2.1.1 The Definition and Convergence -- 2.1.2 The Cauchy Criterion -- 2.1.3 Monotonicity -- 2.1.4 The Pinching Principle -- 2.1.5 Subsequences -- 2.1.6 The Bolzano-Weierstrass Theorem -- 2.2 Limsup and Liminf -- 2.3 Some Special Sequences -- 3 Series -- 3.1 Introduction to Series 
505 8 |a 3.1.1 The Definition and Convergence3.1.2 Partial Sums -- 3.2 Elementary Convergence Tests -- 3.2.1 The Comparison Test -- 3.2.2 The Cauchy Condensation Test -- 3.2.3 Geometric Series -- 3.2.4 The Root Test -- 3.2.5 The Ratio Test -- 3.2.6 Root and Ratio Tests for Divergence -- 3.3 Advanced Convergence Tests -- 3.3.1 Summation by Parts -- 3.3.2 Abelâ€?s Test -- 3.3.3 Absolute and Conditional Convergence -- 3.3.4 Rearrangements of Series -- 3.4 Some Particular Series -- 3.4.1 The Series for e -- 3.4.2 Other Representations for e -- 3.4.3 Sums of Powers 
505 8 |a 3.5 Operations on Series3.5.1 Sums and Scalar Products of Series -- 3.5.2 Products of Series -- 3.5.3 The Cauchy Product -- 4 The Topology of the Real Line -- 4.1 Open and Closed Sets -- 4.1.1 Open Sets -- 4.1.2 Closed Sets -- 4.1.3 Characterization of Open and Closed Sets in Terms of Sequences -- 4.1.4 Further Properties of Open and Closed Sets -- 4.2 Other Distinguished Points -- 4.2.1 Interior Points and Isolated Points -- 4.2.2 Accumulation Points -- 4.3 Bounded Sets -- 4.4 Compact Sets -- 4.4.1 Introduction -- 4.4.2 The Heine-Borel Theorem 
505 8 |a 4.4.3 The Topological Characterization of Compactness4.5 The Cantor Set -- 4.6 Connected and Disconnected Sets -- 4.6.1 Connectivity -- 4.7 Perfect Sets -- 5 Limits and the Continuity of Functions -- 5.1 Definitions and Basic Properties -- 5.1.1 Limits -- 5.1.2 A Limit that Does Not Exist -- 5.1.3 Uniqueness of Limits -- 5.1.4 Properties of Limits -- 5.1.5 Characterization of Limits Using Sequences -- 5.2 Continuous Functions -- 5.2.1 Continuity at a Point -- 5.2.2 The Topological Approach to Continuity -- 5.3 Topological Properties and Continuity 
505 8 |a 5.3.1 The Image of a Function5.3.2 Uniform Continuity -- 5.3.3 Continuity and Connectedness -- 5.3.4 The Intermediate Value Property -- 5.4 Monotonicity and Classifying Discontinuities -- 5.4.1 Left and Right Limits -- 5.4.2 Types of Discontinuities -- 5.4.3 Monotonic Functions -- 6 The Derivative -- 6.1 The Concept of Derivative -- 6.1.1 The Definition -- 6.1.2 Properties of the Derivative -- 6.1.3 The Weierstrass Nowhere Differentiable Function -- 6.1.4 The Chain Rule -- 6.2 The Mean Value Theorem and Applications -- 6.2.1 Local Maxima and Minima 
520 |a A Guide to Real Variables provides aid and conceptual support for the student studying for the qualifying exam in real variables. Beginning with the foundations of the subject, the text moves rapidly but thoroughly through basic topics like completeness, convergence, sequences, series, compactness, topology and the like. All the basic examples like the Cantor set, the Weierstrass nowhere differentiable function, the Weierstrass approximation theory, the Baire category theorem, and the Ascoli-Arzela theorem are treated. The book contains over 100 examples, and most of the basic proofs. It illustrates both the theory and the practice of this sophisticated subject. Graduate students studying for the qualifying exams will find this book to be a concise, focused and informative resource. Professional mathematicians who need a quick review of the subject, or need a place to look up a key fact, will find this book to be a useful resource too. Steven Krantz is well-known for his skill in expository writing and this volume confirms it. He is the author of more than 50 books, and more than 150 scholarly papers. The MAA has awarded him both the Beckenbach Book Prize and the Chauvenet Prize. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Functions of real variables. 
650 6 |a Fonctions de variables réelles. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Functions of real variables  |2 fast 
776 0 8 |i Print version:  |a Krantz, Steven G.  |t Guide to Real Variables.  |d Washington : Mathematical Association of America, ©2014  |z 9780883853443 
830 0 |a Dolciani mathematical expositions. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330367  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330367 
938 |a EBSCOhost  |b EBSC  |n 450274 
938 |a YBP Library Services  |b YANK  |n 7349787 
994 |a 92  |b IZTAP