Cargando…

Elementary Cryptanalysis : a Mathematical Approach /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sinkov, Abraham, Feil, Todd
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Anneli Lax new mathematical library.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • copyright page
  • title page
  • Contents
  • Preface to the First Edition
  • Preface to the Second Edition
  • 1 Monoalphabetic Ciphers Using Additive Alphabets
  • 1.1 The Caesar Cipher
  • Exercises
  • 1.2 Modular arithmetic
  • Exercises
  • 1.3 Additive alphabets
  • Exercises
  • 1.4 Solution of additive alphabets by completing the plain component
  • Exercises
  • 1.5 Solving additive alphabets by frequency considerations
  • Exercises
  • 1.6 Alphabets based on multiplications of the normal sequence
  • Exercises
  • 1.7 Solution of multiplicative alphabetsExercises
  • 1.8 Affine ciphers
  • Exercises
  • 2 General Monoalphabetic Substitution
  • 2.1 Mixed alphabets
  • Exercises
  • 2.2 Solution of mixed alphabet ciphers
  • Exercises
  • 2.3 Solution of monoalphabets in five letter groupings
  • Exercises
  • 2.4 Monoalphabets with symbols as cipher equivalents
  • Exercises
  • 3 Polyalphabetic Substitution
  • 3.1 Polyalphabetic ciphers
  • Exercises
  • 3.2 Recognition of polyalphabetic ciphers
  • Exercises
  • 3.3 Determination of number of alphabets
  • Exercises
  • 3.4 Solution of individual alphabets, if additiveExercises
  • 3.5 Polyalphabetic ciphers with a mixed plain sequence
  • 3.6 Matching alphabets
  • Exercises
  • 3.7 Reduction of a polyalphabetic cipher to a monoalphabet
  • 3.8 Polyalphabetic ciphers with mixed cipher sequences
  • 3.9 General comments about polyalphabetic ciphers
  • Exercises
  • 4 Polygraphic Systems
  • 4.1 Digraphic ciphers based on linear transformationsâ€?matrices
  • Exercises
  • 4.2 Multiplication of matricesâ€?inverses
  • Exercises
  • 4.3 Involutory transformations
  • Exercises
  • 4.4 Recognition of digraphic ciphers4.5 Solution of a linear transformation
  • Exercises
  • 4.6 How to make the Hill System more secure
  • 5 Transposition
  • 5.1 Columnar transposition
  • Exercises
  • 5.2 Solution of transpositions with completely filled rectangles
  • Exercises
  • 5.3 Incompletely filled rectangles
  • Exercises
  • 5.4 Solution of incompletely filled rectanglesâ€?probable word method
  • Exercises
  • 5.5 Incompletely filled rectanglesâ€?general case
  • Exercises
  • 5.6 Repetitions between messages; identical length messages
  • Exercises
  • 6 RSA Encryption6.1 Public-key encryption
  • 6.2 The RSA method
  • 6.3 Creating the RSA keys
  • Exercises
  • 6.4 Why RSA worksâ€?Fermatâ€?s Little Theorem
  • Exercises
  • 6.5 Computational considerations
  • Exercises
  • 6.6 Maple and Mathematica for RSA
  • Exercises
  • 6.7 Breaking RSA and signatures
  • Exercises
  • 7 Perfect Securityâ€?One-time Pads
  • 7.1 One-time pads
  • Exercises
  • 7.2 Pseudo-random number generators
  • Exercises
  • Appendix A: Tables
  • Table of digraphic frequencies
  • Log Weights