Knot Theory /
Knot Theory, a lively exposition of the mathematics of knotting, will appeal to a diverse audience from the undergraduate seeking experience outside the traditional range of studies to mathematicians wanting a leisurely introduction to the subject. Graduate students beginning a program of advanced s...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2012.
|
Colección: | Carus.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Knot Theory
- Copyright Page
- Contents
- Acknowledgements
- Preface
- Chapter 1. A Century of Knot Theory
- Chapter 2. What Is a Knot?
- Section 1: Wild Knots and Unknottings
- Section 2: The Definition of a Knot
- Section 3: Equivalence of Knots, Deformations
- Section 4: Diagrams and Projections
- Section 5: Orientations
- Chapter 3. Combinatorial Techniques
- Section 1: Reidemeister Moves
- Section 2: Colorings
- Section 3: A Generalization of Colorability, mod p Labelings
- Section 4: Matrices, Labelings, and DeterminantsSection 5: The Alexander Polynomial
- Chapter 4. Geometric Techniques
- Section 1: Surfaces and Homeomorphisms
- Section 2: The Classification of Surfaces
- Section 3: Seifert Surfaces and the Genus of a Knot
- Section 4: Surgery on Surfaces
- Section 5: Connected Sums of Knots and Prime Decompositions
- Chapter 5. Algebraic Techniques
- Section 1: Symmetric Groups
- Section 2: Knots and Groups
- Section 3: Conjugation and the Labeling Theorem
- Section 4: Equations in Groups and the Group of a Knot
- Section 5: The Fundamental GroupChapter 6. Geometry, Algebra, and the Alexander Polynomial
- Section 1: The Seifert Matrix
- Section 2: Seifert Matrices and the Alexander Polynomial
- Section 3: The Signature of a Knot, and other S-Equivalence Invariants
- Section 4: Knot Groups and the Alexander Polynomial
- Chapter 7. Numerical Invariants
- Section 1: Summary of Numerical Invariants
- Section 2: New Invariants
- Section 3: Braids and Bridges
- Section 4: Relations Between the Numerical Invariants
- Section 5: Independence of Numerical Invariants
- Chapter 8. Symmetries of KnotsSection 1: Amphicheiral and Reversible Knots
- Section 2: Periodic Knots
- Section 3: The Murasugi Conditions
- Section 4: Periodic Seifert Surfaces and Edmonds' Theorem
- Section 5: Applications of the Murasugi and Edmonds Conditions
- Chapter 9. High-Dimensional Knot Theory
- Section 1: Defining High-dimensional Knots
- Section 2: Three Dimensions from a 2-dimensional Perspective
- Section 3: Three-dimensional Cross-sections of a 4-dimensional Knot
- Section 4: Slice Knots
- Section 5: The Knot Concordance Group
- Chapter 10. New Combinatorial TechniquesSection 1: The Conway Polynomial of a Knot
- Section 2: New Polynomial Invariants
- Section 3: Kauffman's Bracket Polynomial
- Appendix 1. Knot Table
- Appendix 2. Alexander Polynomials
- References
- Index