Cargando…

Qualitative and asymptotic analysis of differential equations with random perturbations /

Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematica...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Samoĭlenko, A. M. (Anatoliĭ Mikhaĭlovich)
Otros Autores: Stanzhytskyi, Oleksandr
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Colección:World Scientific series on nonlinear science. Monographs and treatises ; v. 78.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn774956316
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 120130s2011 si ob 001 0 eng d
010 |z  2011499210 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d N$T  |d E7B  |d I9W  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCA  |d OCLCQ  |d OCLCF  |d IDEBK  |d CDX  |d EBLCP  |d OCLCQ  |d LOA  |d AZK  |d AGLDB  |d MOR  |d PIFAG  |d OTZ  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d JBG  |d NJR  |d U3W  |d OCLCQ  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d AU@  |d OCLCQ  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 778314559  |a 817056688  |a 824106801  |a 961626003  |a 962604406  |a 1162012808  |a 1241914102  |a 1290080365  |a 1300536707 
020 |a 981432907X  |q (electronic bk.) 
020 |a 9789814329071  |q (electronic bk.) 
020 |a 1283433540 
020 |a 9781283433549 
020 |z 9789814329064 
020 |z 9814329061 
020 |a 9786613433541 
020 |a 6613433543 
029 1 |a AU@  |b 000054186239 
029 1 |a DEBBG  |b BV043117069 
029 1 |a DEBBG  |b BV044093680 
029 1 |a DEBSZ  |b 372745091 
029 1 |a DEBSZ  |b 421459565 
035 |a (OCoLC)774956316  |z (OCoLC)778314559  |z (OCoLC)817056688  |z (OCoLC)824106801  |z (OCoLC)961626003  |z (OCoLC)962604406  |z (OCoLC)1162012808  |z (OCoLC)1241914102  |z (OCoLC)1290080365  |z (OCoLC)1300536707 
050 4 |a QA372  |b .S266 2011 
072 7 |a MAT  |x 007000  |2 bisacsh 
072 7 |a PBKD  |2 bicssc 
082 0 4 |a 515/.355  |2 23 
049 |a UAMI 
100 1 |a Samoĭlenko, A. M.  |q (Anatoliĭ Mikhaĭlovich) 
245 1 0 |a Qualitative and asymptotic analysis of differential equations with random perturbations /  |c Anatoliy M. Samoilenko, Oleksandr Stanzhytskyi. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (ix, 312 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific series on nonlinear science. Series A, Monographs and treatises,  |x 1793-1010 ;  |v v. 78 
504 |a Includes bibliographical references (pages 295-310) and index. 
505 0 |a 1. Differential equations with random right-hand sides and impulsive effects -- 2. Invariant sets for systems with random perturbations -- 3. Linear and quasilinear stochastic Ito systems -- 4. Extensions of Ito systems on a torus -- 5. The averaging method for equations with random perturbations. 
520 |a Differential equations with random perturbations are the mathematical models of real-world processes that cannot be described via deterministic laws, and their evolution depends on random factors. The modern theory of differential equations with random perturbations is on the edge of two mathematical disciplines : random processes and ordinary differential equations. Consequently, the sources of these methods come both from the theory of random processes and from the classic theory of differential equations. This work focuses on the approach to stochastic equations from the perspective of ordinary differential equations. For this purpose, both asymptotic and qualitative methods which appeared in the classical theory of differential equations and nonlinear mechanics are developed. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Perturbation (Mathematics) 
650 0 |a Differential equations  |x Asymptotic theory. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Perturbation (Mathématiques) 
650 6 |a Équations différentielles  |x Théorie asymptotique. 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Differential equations  |x Asymptotic theory  |2 fast 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Perturbation (Mathematics)  |2 fast 
650 7 |a Mathematics.  |2 hilcc 
650 7 |a Physical Sciences & Mathematics.  |2 hilcc 
650 7 |a Mathematical Statistics.  |2 hilcc 
700 1 |a Stanzhytskyi, Oleksandr. 
758 |i has work:  |a Qualitative and asymptotic analysis of differential equations with random perturbations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGRPVyQjc7pgvhbpRQjJrC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789814329064  |z 9814329061 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 78. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3050912  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565274 
938 |a Coutts Information Services  |b COUT  |n 23886961 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3050912 
938 |a ebrary  |b EBRY  |n ebr10524620 
938 |a EBSCOhost  |b EBSC  |n 426355 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 343354 
938 |a YBP Library Services  |b YANK  |n 7364424 
994 |a 92  |b IZTAP