Cargando…

Applications of unitary symmetry and combinatorics /

This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A un...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Louck, James D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn773799229
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 120120s2011 si ob 001 0 eng d
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d E7B  |d N$T  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OSU  |d OCLCQ  |d OCLCF  |d IDEBK  |d CDX  |d EBLCP  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d JBG  |d COO  |d U3W  |d STF  |d WRM  |d VTS  |d COCUF  |d RRP  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 778314600  |a 817056770  |a 824106828  |a 847509486  |a 858228500  |a 961491341  |a 1058122196 
020 |a 9814350729  |q (electronic bk.) 
020 |a 9789814350723  |q (electronic bk.) 
020 |a 1283433834 
020 |a 9781283433839 
020 |z 9789814350716 
020 |z 9814350710 
029 1 |a AU@  |b 000051451570 
029 1 |a DEBBG  |b BV043098965 
029 1 |a DEBBG  |b BV044161574 
029 1 |a DEBSZ  |b 372744982 
029 1 |a DEBSZ  |b 39392291X 
029 1 |a DEBSZ  |b 421459727 
029 1 |a DEBSZ  |b 454996691 
029 1 |a NZ1  |b 15586263 
029 1 |a AU@  |b 000073139264 
035 |a (OCoLC)773799229  |z (OCoLC)778314600  |z (OCoLC)817056770  |z (OCoLC)824106828  |z (OCoLC)847509486  |z (OCoLC)858228500  |z (OCoLC)961491341  |z (OCoLC)1058122196 
050 4 |a QC174.17.S9  |b L68 2011 
072 7 |a SCI  |x 057000  |2 bisacsh 
072 7 |a PBV  |2 bicssc 
082 0 4 |a 530.12  |2 23 
049 |a UAMI 
100 1 |a Louck, James D. 
245 1 0 |a Applications of unitary symmetry and combinatorics /  |c James D. Louck. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2011. 
300 |a 1 online resource (xxxv, 344 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 327-333) and index. 
505 0 |6 880-01  |a Composite quantum systems -- Algebra of permutation matrices -- Doubly stochastic matrices in angular momentum theory -- Magic squares -- Alternating sign matrices -- The Heisenberg magnetic ring -- Counting formulas for compositions and partitions -- No single coupling scheme for n>̲ 5 -- Generalization of binary coupling schemes. 
520 |a This monograph is a synthesis of the theory of the pairwise coupling of the angular momenta of arbitrarily many independent systems to the total angular momentum in which the universal role of doubly stochastic matrices and their quantum-mechanical probabilistic interpretation is a major theme. A uniform viewpoint is presented based on the structure of binary trees. This includes a systematic method for the evaluation of all 3n-j coefficients and their relationship to cubic graphs. A number of topical subjects that emerge naturally are also developed, such as the algebra of permutation matrices, the properties of magic squares and an associated generalized Regge form, the Zeilberger counting formula for alternating sign matrices, and the Heisenberg ring problem, viewed as a composite system in which the total angular momentum is conserved. The readership is intended to be advanced graduate students and researchers interested in learning about the relationship between unitary symmetry and combinatorics and challenging unsolved problems. The many examples serve partially as exercises, but this monograph is not a textbook. It is hoped that the topics presented promote further and more rigorous developments that lead to a deeper understanding of the angular momentum properties of complex systems viewed as composite wholes. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Symmetry (Physics) 
650 0 |a Combinatorial analysis. 
650 4 |a Combinatorial analysis. 
650 4 |a Symmetry (Physics) 
650 6 |a Symétrie (Physique) 
650 6 |a Analyse combinatoire. 
650 7 |a SCIENCE  |x Physics  |x Quantum Theory.  |2 bisacsh 
650 7 |a Combinatorial analysis  |2 fast 
650 7 |a Symmetry (Physics)  |2 fast 
758 |i has work:  |a Applications of unitary symmetry and combinatorics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGJTYxdjmYtF6CCTMD96jC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789814350716  |z 9814350710 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=840615  |z Texto completo 
880 0 |6 505-00/(S  |a Machine generated contents note: 1.Composite Quantum Systems -- 1.1. Introduction -- 1.2. Angular Momentum State Vectors of a Composite System -- 1.2.1. Group Actions in a Composite System -- 1.3. Standard Form of the Kronecker Direct Sum -- 1.3.1. Reduction of Kronecker Products -- 1.4. Recoupling Matrices -- 1.5. Preliminary Results on Doubly Stochastic Matrices and Permutation Matrices -- 1.6. Relationship between Doubly Stochastic Matrices and Density Matrices in Angular Momentum Theory -- 2. Algebra of Permutation Matrices -- 2.1. Introduction -- 2.2. Basis Sets of Permutation Matrices -- 2.2.1. Summary -- 3. Coordinates of A in Basis PΣn(e, p) -- 3.1. Notations -- 3.2. The A-Expansion Rule in the Basis PΣn(e, p) -- 3.3. Dual Matrices in the Basis Set Σn(e, p) -- 3.3.1. Dual Matrices for Σ3(e, p) -- 3.3.2. Dual Matrices for Σ4(e, p) -- 3.4. The General Dual Matrices in the Basis Σn(e, p) -- 3.4.1. Relation between the A-Expansion and Dual Matrices. 
880 0 |6 505-01/(S  |a Contents note continued: 7.3. Strict Gelfand-Tsetlin Patterns for λ = (nn -- 1 ... 21) -- 7.3.1. Symmetries -- 7.4. Sign-Reversal-Shift Invariant Polynomials -- 7.5. The Requirement of Zeros -- 7.6. The Incidence Matrix Formulation -- 8. The Heisenberg Magnetic Ring -- 8.1. Introduction -- 8.2. Matrix Elements of H in the Uncoupled and Coupled Bases -- 8.3. Exact Solution of the Heisenberg Ring Magnet for n = 2,3,4 -- 8.4. The Heisenberg Ring Hamiltonian: Even n -- 8.4.1. Summary of Properties of Recoupling Matrices -- 8.4.2. Maximal Angular Momentum Eigenvalues -- 8.4.3. Shapes and Paths for Coupling Schemes I and II -- 8.4.4. Determination of the Shape Transformations -- 8.4.5. The Transformation Method for n = 4 -- 8.4.6. The General 3(2f -- 1) --- j Coefficients -- 8.4.7. The General 3(2f -- 1) --- j Coefficients Continued -- 8.5. The Heisenberg Ring Hamiltonian: Odd n -- 8.5.1. Matrix Representations of H -- 8.5.2. Matrix Elements of Rj2:j1: The 6f --- j Coefficients. 
938 |a YBP Library Services  |b YANK  |n 4589268 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 343383 
938 |a EBSCOhost  |b EBSC  |n 426336 
938 |a ebrary  |b EBRY  |n ebr10524594 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL840615 
938 |a Coutts Information Services  |b COUT  |n 23887066 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565360 
938 |a Internet Archive  |b INAR  |n applicationsofun0000louc 
994 |a 92  |b IZTAP