Direct numerical simulations of gas-liquid multiphase flows /
A comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students in various fields.
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge ; New York :
Cambridge University Press,
©2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Introduction
- 1.1. Examples of multiphase flows
- 1.2. Computational modeling
- 1.3. Looking ahead
- 2. Fluid mechanics with interfaces
- 2.1. General principles
- 2.2. Basic equations
- 2.3. Interfaces: description and definitions
- 2.4. Fluid mechanics with interfaces
- 2.5. Fluid mechanics with interfaces: the one-fluid formulation
- 2.6. Nondimensional numbers
- 2.7. Thin films, intermolecular forces, and contact lines
- 2.8. Notes
- 3. Numerical solutions of the Navier
- Stokes equations
- 3.1. Time integration
- 3.2. Spatial discretization
- 3.3. Discretization of the advection terms
- 3.4. The viscous terms
- 3.5. The pressure equation
- 3.6. Velocity boundary conditions.
- 3.7. Outflow boundary conditions
- 3.8. Adaptive mesh refinement
- 3.9. Summary
- 3.10. Postscript: conservative versus non-conservative form
- 4. Advecting a fluid interface
- 4.1. Notations
- 4.2. Advecting the color function
- 4.3. The volume-of-fluid (VOF) method
- 4.4. Front tracking
- 4.5. The level-set method
- 4.6. Phase-field methods
- 4.7. The CIP method
- 4.8. Summary
- 5. The volume-of-fluid method
- 5.1. Basic properties
- 5.2. Interface reconstruction
- 5.3. Tests of reconstruction methods
- 5.4. Interface advection
- 5.5. Tests of reconstruction and advection methods
- 5.6. Hybrid methods
- 6. Advecting marker points: front tracking
- 6.1. The structure of the front
- 6.2. Restructuring the fronts
- 6.3. The front-grid communications
- 6.4. Advection of the front.
- 6.5. Constructing the marker function
- 6.6. Changes in the front topology
- 6.7. Notes
- 7. Surface tension
- 7.1. Computing surface tension from marker functions
- 7.2. Computing the surface tension of a tracked front
- 7.3. Testing the surface tension methods
- 7.4. More sophisticated surface tension methods
- 7.5. Conclusion on numerical methods
- 8. Disperse bubbly flows
- 8.1. Introduction
- 8.2. Homogeneous bubbly flows
- 8.3. Bubbly flows in vertical channels
- 8.4. Discussion
- 9. Atomization and breakup
- 9.1. Introduction
- 9.2. Thread, sheet, and rim breakup
- 9.3. High-speed jets
- 9.4. Atomization simulations
- 10. Droplet collision, impact, and splashing
- 10.1. Introduction
- 10.2. Early simulations
- 10.3. Low-velocity impacts and collisions
- 10.4. More complex slow impacts.
- 10.5. Corolla, crowns, and splashing impacts
- 11. Extensions
- 11.1. Additional fields and surface physics
- 11.2. Imbedded boundaries
- 11.3. Multiscale issues
- 11.4. Summary
- Appendix A Interfaces: description and definitions
- A.1. Two-dimensional geometry
- A.2. Three-dimensional geometry
- A.3. Axisymmetric geometry
- A.4. Differentiation and integration on surfaces
- Appendix B Distributions concentrated on the interface
- B.1. A simple example
- Appendix C Cube-chopping algorithm
- C.1. Two-dimensional problem
- C.2. Three-dimensional problem
- Appendix D The dynamics of liquid sheets: linearized theory
- D.1. Flow configuration
- D.2. Inviscid results
- D.3. Viscous theory for the Kelvin
- Helmholtz instability.