Cargando…

Direct numerical simulations of gas-liquid multiphase flows /

A comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students in various fields.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tryggvason, Grétar (Autor), Scardovelli, Ruben (Autor), Zaleski, S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, ©2011.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Examples of multiphase flows
  • 1.2. Computational modeling
  • 1.3. Looking ahead
  • 2. Fluid mechanics with interfaces
  • 2.1. General principles
  • 2.2. Basic equations
  • 2.3. Interfaces: description and definitions
  • 2.4. Fluid mechanics with interfaces
  • 2.5. Fluid mechanics with interfaces: the one-fluid formulation
  • 2.6. Nondimensional numbers
  • 2.7. Thin films, intermolecular forces, and contact lines
  • 2.8. Notes
  • 3. Numerical solutions of the Navier
  • Stokes equations
  • 3.1. Time integration
  • 3.2. Spatial discretization
  • 3.3. Discretization of the advection terms
  • 3.4. The viscous terms
  • 3.5. The pressure equation
  • 3.6. Velocity boundary conditions.
  • 3.7. Outflow boundary conditions
  • 3.8. Adaptive mesh refinement
  • 3.9. Summary
  • 3.10. Postscript: conservative versus non-conservative form
  • 4. Advecting a fluid interface
  • 4.1. Notations
  • 4.2. Advecting the color function
  • 4.3. The volume-of-fluid (VOF) method
  • 4.4. Front tracking
  • 4.5. The level-set method
  • 4.6. Phase-field methods
  • 4.7. The CIP method
  • 4.8. Summary
  • 5. The volume-of-fluid method
  • 5.1. Basic properties
  • 5.2. Interface reconstruction
  • 5.3. Tests of reconstruction methods
  • 5.4. Interface advection
  • 5.5. Tests of reconstruction and advection methods
  • 5.6. Hybrid methods
  • 6. Advecting marker points: front tracking
  • 6.1. The structure of the front
  • 6.2. Restructuring the fronts
  • 6.3. The front-grid communications
  • 6.4. Advection of the front.
  • 6.5. Constructing the marker function
  • 6.6. Changes in the front topology
  • 6.7. Notes
  • 7. Surface tension
  • 7.1. Computing surface tension from marker functions
  • 7.2. Computing the surface tension of a tracked front
  • 7.3. Testing the surface tension methods
  • 7.4. More sophisticated surface tension methods
  • 7.5. Conclusion on numerical methods
  • 8. Disperse bubbly flows
  • 8.1. Introduction
  • 8.2. Homogeneous bubbly flows
  • 8.3. Bubbly flows in vertical channels
  • 8.4. Discussion
  • 9. Atomization and breakup
  • 9.1. Introduction
  • 9.2. Thread, sheet, and rim breakup
  • 9.3. High-speed jets
  • 9.4. Atomization simulations
  • 10. Droplet collision, impact, and splashing
  • 10.1. Introduction
  • 10.2. Early simulations
  • 10.3. Low-velocity impacts and collisions
  • 10.4. More complex slow impacts.
  • 10.5. Corolla, crowns, and splashing impacts
  • 11. Extensions
  • 11.1. Additional fields and surface physics
  • 11.2. Imbedded boundaries
  • 11.3. Multiscale issues
  • 11.4. Summary
  • Appendix A Interfaces: description and definitions
  • A.1. Two-dimensional geometry
  • A.2. Three-dimensional geometry
  • A.3. Axisymmetric geometry
  • A.4. Differentiation and integration on surfaces
  • Appendix B Distributions concentrated on the interface
  • B.1. A simple example
  • Appendix C Cube-chopping algorithm
  • C.1. Two-dimensional problem
  • C.2. Three-dimensional problem
  • Appendix D The dynamics of liquid sheets: linearized theory
  • D.1. Flow configuration
  • D.2. Inviscid results
  • D.3. Viscous theory for the Kelvin
  • Helmholtz instability.