Cargando…

Rough-Fuzzy Pattern Recognition : Applications in Bioinformatics and Medical Imaging.

Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processingEmphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Maji, Pradipta
Otros Autores: Pal, Sankar K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, 2012.
Colección:Wiley series on bioinformatics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn772844581
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120116s2012 xx ob 001 0 eng d
010 |z  2011013787 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d E7B  |d YDXCP  |d UBY  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d CDX  |d MHW  |d IDEBK  |d UMI  |d COO  |d N$T  |d DEBSZ  |d OCLCQ  |d AZK  |d LOA  |d COCUF  |d IAS  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d ICG  |d INT  |d VT2  |d OCLCO  |d AU@  |d OCLCO  |d YDX  |d OCLCQ  |d WYU  |d OCLCA  |d TKN  |d DKC  |d OCLCQ  |d UX1  |d OCLCQ  |d OCLCA  |d LVT  |d LDP  |d VLY  |d OCLCO  |d SNU  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
016 7 |a 015820992  |2 Uk 
016 7 |a 101580428  |2 DNLM 
019 |a 774489474  |a 775993029  |a 780367935  |a 817055753  |a 826647704  |a 961501849  |a 962591915  |a 1055388128  |a 1060785680  |a 1065988475  |a 1081296797  |a 1151522375  |a 1156937144  |a 1162248977  |a 1228601689  |a 1244441902  |a 1249222923 
020 |a 9781118119693 
020 |a 111811969X 
020 |z 111800440X 
020 |z 9781118004401 
020 |z 1283425017 
020 |z 9781283425018 
020 |z 9781118119716 
020 |z 1118119711 
020 |a 9781118119723  |q (electronic bk.) 
020 |a 111811972X  |q (electronic bk.) 
020 |a 9786613425010 
020 |a 661342501X 
024 8 |a 9786613425010 
024 7 |a 10.1002/9781118119723  |2 doi 
029 1 |a DEBBG  |b BV041049587 
029 1 |a DEBBG  |b BV041121167 
029 1 |a DEBBG  |b BV044159765 
029 1 |a DEBSZ  |b 396760945 
029 1 |a DEBSZ  |b 431068437 
029 1 |a DEBSZ  |b 449274098 
029 1 |a NZ1  |b 15042701 
029 1 |a AU@  |b 000054714095 
035 |a (OCoLC)772844581  |z (OCoLC)774489474  |z (OCoLC)775993029  |z (OCoLC)780367935  |z (OCoLC)817055753  |z (OCoLC)826647704  |z (OCoLC)961501849  |z (OCoLC)962591915  |z (OCoLC)1055388128  |z (OCoLC)1060785680  |z (OCoLC)1065988475  |z (OCoLC)1081296797  |z (OCoLC)1151522375  |z (OCoLC)1156937144  |z (OCoLC)1162248977  |z (OCoLC)1228601689  |z (OCoLC)1244441902  |z (OCoLC)1249222923 
037 |a 342501  |b MIL 
050 4 |a R859.7.F89 M35 2011 
060 4 |a 2012 C-115 
060 4 |a QU 26.5 
072 7 |a HBLA  |2 bicssc 
072 7 |a MED  |x 003040  |2 bisacsh 
072 7 |a MED  |x 009000  |2 bisacsh 
072 7 |a MED  |x 029000  |2 bisacsh 
072 7 |a MED  |x 048000  |2 bisacsh 
072 7 |a TEC  |x 059000  |2 bisacsh 
082 0 4 |a 006.4  |a 610.285 
084 |a TEC008000  |2 bisacsh 
049 |a UAMI 
100 1 |a Maji, Pradipta. 
245 1 0 |a Rough-Fuzzy Pattern Recognition :  |b Applications in Bioinformatics and Medical Imaging. 
260 |a Hoboken :  |b John Wiley & Sons,  |c 2012. 
300 |a 1 online resource (313 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Wiley series in bioinformatics: computational techniques and engineering 
505 0 |6 880-01  |a ROUGH-FUZZY PATTERN RECOGNITION; CONTENTS; Foreword; Preface; About the Authors; 1 Introduction to Pattern Recognition and Data Mining; 1.1 Introduction; 1.2 Pattern Recognition; 1.2.1 Data Acquisition; 1.2.2 Feature Selection; 1.2.3 Classification and Clustering; 1.3 Data Mining; 1.3.1 Tasks, Tools, and Applications; 1.3.2 Pattern Recognition Perspective; 1.4 Relevance of Soft Computing; 1.5 Scope and Organization of the Book; References; 2 Rough-Fuzzy Hybridization and Granular Computing; 2.1 Introduction; 2.2 Fuzzy Sets; 2.3 Rough Sets; 2.4 Emergence of Rough-Fuzzy Computing. 
505 8 |a 2.4.1 Granular Computing2.4.2 Computational Theory of Perception and f -Granulation; 2.4.3 Rough-Fuzzy Computing; 2.5 Generalized Rough Sets; 2.6 Entropy Measures; 2.7 Conclusion and Discussion; References; 3 Rough-Fuzzy Clustering: Generalized c-Means Algorithm; 3.1 Introduction; 3.2 Existing c-Means Algorithms; 3.2.1 Hard c-Means; 3.2.2 Fuzzy c-Means; 3.2.3 Possibilistic c-Means; 3.2.4 Rough c-Means; 3.3 Rough-Fuzzy-Possibilistic c-Means; 3.3.1 Objective Function; 3.3.2 Cluster Prototypes; 3.3.3 Fundamental Properties; 3.3.4 Convergence Condition; 3.3.5 Details of the Algorithm. 
505 8 |a 3.3.6 Selection of Parameters3.4 Generalization of Existing c-Means Algorithms; 3.4.1 RFCM: Rough-Fuzzy c-Means; 3.4.2 RPCM: Rough-Possibilistic c-Means; 3.4.3 RCM: Rough c-Means; 3.4.4 FPCM: Fuzzy-Possibilistic c-Means; 3.4.5 FCM: Fuzzy c-Means; 3.4.6 PCM: Possibilistic c-Means; 3.4.7 HCM: Hard c-Means; 3.5 Quantitative Indices for Rough-Fuzzy Clustering; 3.5.1 Average Accuracy, a Index; 3.5.2 Average Roughness, o Index; 3.5.3 Accuracy of Approximation, a* Index; 3.5.4 Quality of Approximation, g Index; 3.6 Performance Analysis; 3.6.1 Quantitative Indices; 3.6.2 Synthetic Data Set: X32. 
505 8 |a 3.6.3 Benchmark Data Sets3.7 Conclusion and Discussion; References; 4 Rough-Fuzzy Granulation and Pattern Classification; 4.1 Introduction; 4.2 Pattern Classification Model; 4.2.1 Class-Dependent Fuzzy Granulation; 4.2.2 Rough-Set-Based Feature Selection; 4.3 Quantitative Measures; 4.3.1 Dispersion Measure; 4.3.2 Classification Accuracy, Precision, and Recall; 4.3.3 k Coefficient; 4.3.4 b Index; 4.4 Description of Data Sets; 4.4.1 Completely Labeled Data Sets; 4.4.2 Partially Labeled Data Sets; 4.5 Experimental Results; 4.5.1 Statistical Significance Test; 4.5.2 Class Prediction Methods. 
505 8 |a 4.5.3 Performance on Completely Labeled Data4.5.4 Performance on Partially Labeled Data; 4.6 Conclusion and Discussion; References; 5 Fuzzy-Rough Feature Selection using f -Information Measures; 5.1 Introduction; 5.2 Fuzzy-Rough Sets; 5.3 Information Measure on Fuzzy Approximation Spaces; 5.3.1 Fuzzy Equivalence Partition Matrix and Entropy; 5.3.2 Mutual Information; 5.4 f -Information and Fuzzy Approximation Spaces; 5.4.1 V -Information; 5.4.2 Ia-Information; 5.4.3 Ma-Information; 5.4.4 ca-Information; 5.4.5 Hellinger Integral; 5.4.6 Renyi Distance; 5.5 f -Information for Feature Selection. 
520 |a Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processingEmphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems devel. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Fuzzy systems in medicine. 
650 0 |a Pattern recognition systems. 
650 0 |a Bioinformatics. 
650 0 |a Diagnostic imaging  |x Data processing. 
650 1 2 |a Fuzzy Logic 
650 1 2 |a Pattern Recognition, Automated  |x methods 
650 2 2 |a Computational Biology  |x methods 
650 2 2 |a Image Processing, Computer-Assisted  |x methods 
650 2 |a Pattern Recognition, Automated 
650 2 |a Computational Biology 
650 6 |a Systèmes flous en médecine. 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Bio-informatique. 
650 6 |a Imagerie pour le diagnostic  |x Informatique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Electronics  |x General.  |2 bisacsh 
650 7 |a MEDICAL  |x Allied Health Services  |x Medical Technology.  |2 bisacsh 
650 7 |a MEDICAL  |x Biotechnology.  |2 bisacsh 
650 7 |a MEDICAL  |x Family & General Practice.  |2 bisacsh 
650 7 |a MEDICAL  |x Lasers in Medicine.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Biomedical.  |2 bisacsh 
650 7 |a Bioinformatics  |2 fast 
650 7 |a Diagnostic imaging  |x Data processing  |2 fast 
650 7 |a Fuzzy systems in medicine  |2 fast 
650 7 |a Pattern recognition systems  |2 fast 
700 1 |a Pal, Sankar K. 
776 0 8 |i Print version:  |a Maji, Pradipta.  |t Rough-Fuzzy Pattern Recognition : Applications in Bioinformatics and Medical Imaging.  |d Hoboken : John Wiley & Sons, ©2012  |z 9781118004401 
830 0 |a Wiley series on bioinformatics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=818439  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction to Pattern Recognition and Data Mining --  |g 1.1.  |t Introduction --  |g 1.2.  |t Pattern Recognition --  |g 1.2.1.  |t Data Acquisition --  |g 1.2.2.  |t Feature Selection --  |g 1.2.3.  |t Classification and Clustering --  |g 1.3.  |t Data Mining --  |g 1.3.1.  |t Tasks, Tools, and Applications --  |g 1.3.2.  |t Pattern Recognition Perspective --  |g 1.4.  |t Relevance of Soft Computing --  |g 1.5.  |t Scope and Organization of the Book --  |t References --  |g 2.  |t Rough-Fuzzy Hybridization and Granular Computing --  |g 2.1.  |t Introduction --  |g 2.2.  |t Fuzzy Sets --  |g 2.3.  |t Rough Sets --  |g 2.4.  |t Emergence of Rough-Fuzzy Computing --  |g 2.4.1.  |t Granular Computing --  |g 2.4.2.  |t Computational Theory of Perception and [ƒ]-Granulation --  |g 2.4.3.  |t Rough-Fuzzy Computing --  |g 2.5.  |t Generalized Rough Sets --  |g 2.6.  |t Entropy Measures --  |g 2.7.  |t Conclusion and Discussion --  |t References --  |g 3.  |t Rough-Fuzzy Clustering: Generalized c-Means Algorithm --  |g 3.1.  |t Introduction --  |g 3.2.  |t Existing c-Means Algorithms --  |g 3.2.1.  |t Hard c-Means --  |g 3.2.2.  |t Fuzzy c-Means --  |g 3.2.3.  |t Possibilistic c-Means --  |g 3.2.4.  |t Rough c-Means --  |g 3.3.  |t Rough-Fuzzy-Possibilistic c-Means --  |g 3.3.1.  |t Objective Function --  |g 3.3.2.  |t Cluster Prototypes --  |g 3.3.3.  |t Fundamental Properties --  |g 3.3.4.  |t Convergence Condition --  |g 3.3.5.  |t Details of the Algorithm --  |g 3.3.6.  |t Selection of Parameters --  |g 3.4.  |t Generalization of Existing c-Means Algorithms --  |g 3.4.1.  |t RFCM: Rough-Fuzzy c-Means --  |g 3.4.2.  |t RPCM: Rough-Possibilistic c-Means --  |g 3.4.3.  |t RCM: Rough c-Means --  |g 3.4.4.  |t FPCM: Fuzzy-Possibilistic c-Means --  |g 3.4.5.  |t FCM: Fuzzy c-Means --  |g 3.4.6.  |t PCM: Possibilistic c-Means --  |g 3.4.7.  |t HCM: Hard c-Means --  |g 3.5.  |t Quantitative Indices for Rough-Fuzzy Clustering --  |g 3.5.1.  |t Average Accuracy, α Index --  |g 3.5.2.  |t Average Roughness, Index --  |g 3.5.3.  |t Accuracy of Approximation, α Index --  |g 3.5.4.  |t Quality of Approximation, γ Index --  |g 3.6.  |t Performance Analysis --  |g 3.6.1.  |t Quantitative Indices --  |g 3.6.2.  |t Synthetic Data Set: X32 --  |g 3.6.3.  |t Benchmark Data Sets --  |g 3.7.  |t Conclusion and Discussion --  |t References --  |g 4.  |t Rough-Fuzzy Granulation and Pattern Classification --  |g 4.1.  |t Introduction --  |g 4.2.  |t Pattern Classification Model --  |g 4.2.1.  |t Class-Dependent Fuzzy Granulation --  |g 4.2.2.  |t Rough-Set-Based Feature Selection --  |g 4.3.  |t Quantitative Measures --  |g 4.3.1.  |t Dispersion Measure --  |g 4.3.2.  |t Classification Accuracy, Precision, and Recall --  |g 4.3.3.  |t κ Coefficient --  |g 4.3.4.  |t β Index --  |g 4.4.  |t Description of Data Sets --  |g 4.4.1.  |t Completely Labeled Data Sets --  |g 4.4.2.  |t Partially Labeled Data Sets --  |g 4.5.  |t Experimental Results --  |g 4.5.1.  |t Statistical Significance Test --  |g 4.5.2.  |t Class Prediction Methods --  |g 4.5.3.  |t Performance on Completely Labeled Data --  |g 4.5.4.  |t Performance on Partially Labeled Data --  |g 4.6.  |t Conclusion and Discussion --  |t References --  |g 5.  |t Fuzzy-Rough Feature Selection using [ƒ]-Information Measures --  |g 5.1.  |t Introduction --  |g 5.2.  |t Fuzzy-Rough Sets --  |g 5.3.  |t Information Measure on Fuzzy Approximation Spaces --  |g 5.3.1.  |t Fuzzy Equivalence Partition Matrix and Entropy --  |g 5.3.2.  |t Mutual Information --  |g 5.4.  |t [ƒ]-Information and Fuzzy Approximation Spaces --  |g 5.4.1.  |t V-Information --  |g 5.4.2.  |t Iα-Information --  |g 5.4.3.  |t Mα-Information --  |g 5.4.4.  |t χα-Information --  |g 5.4.5.  |t Hellinger Integral --  |g 5.4.6.  |t Renyi Distance --  |g 5.5.  |t [ƒ]-Information for Feature Selection --  |g 5.5.1.  |t Feature Selection Using [ƒ]-Information --  |g 5.5.2.  |t Computational Complexity --  |g 5.5.3.  |t Fuzzy Equivalence Classes --  |g 5.6.  |t Quantitative Measures --  |g 5.6.1.  |t Fuzzy-Rough-Set-Based Quantitative Indices --  |g 5.6.2.  |t Existing Feature Evaluation Indices --  |g 5.7.  |t Experimental Results --  |g 5.7.1.  |t Description of Data Sets --  |g 5.7.2.  |t Illustrative Example --  |g 5.7.3.  |t Effectiveness of the FEPM-Based Method --  |g 5.7.4.  |t Optimum Value of Weight Parameter β --  |g 5.7.5.  |t Optimum Value of Multiplicative Parameter η --  |g 5.7.6.  |t Performance of Different [ƒ]-Information Measures --  |g 5.7.7.  |t Comparative Performance of Different Algorithms --  |g 5.8.  |t Conclusion and Discussion --  |t References --  |g 6.  |t Rough Fuzzy c-Medoids and Amino Acid Sequence Analysis --  |g 6.1.  |t Introduction --  |g 6.2.  |t Bio-Basis Function and String Selection Methods --  |g 6.2.1.  |t Bio-Basis Function --  |g 6.2.2.  |t Selection of Bio-Basis Strings Using Mutual Information --  |g 6.2.3.  |t Selection of Bio-Basis Strings Using Fisher Ratio --  |g 6.3.  |t Fuzzy-Possibilistic c-Medoids Algorithm --  |g 6.3.1.  |t Hard c-Medoids --  |g 6.3.2.  |t Fuzzy c-Medoids --  |g 6.3.3.  |t Possibilistic c-Medoids --  |g 6.3.4.  |t Fuzzy-Possibilistic c-Medoids --  |g 6.4.  |t Rough-Fuzzy c-Medoids Algorithm --  |g 6.4.1.  |t Rough c-Medoids --  |g 6.4.2.  |t Rough-Fuzzy c-Medoids --  |g 6.5.  |t Relational Clustering for Bio-Basis String Selection --  |g 6.6.  |t Quantitative Measures --  |g 6.6.1.  |t Using Homology Alignment Score --  |g 6.6.2.  |t Using Mutual Information --  |g 6.7.  |t Experimental Results --  |g 6.7.1.  |t Description of Data Sets --  |g 6.7.2.  |t Illustrative Example --  |g 6.7.3.  |t Performance Analysis --  |g 6.8.  |t Conclusion and Discussion --  |t References --  |g 7.  |t Clustering Functionally Similar Genes from Microarray Data --  |g 7.1.  |t Introduction --  |g 7.2.  |t Clustering Gene Expression Data --  |g 7.2.1.  |t κ-Means Algorithm --  |g 7.2.2.  |t Self-Organizing Map --  |g 7.2.3.  |t Hierarchical Clustering --  |g 7.2.4.  |t Graph-Theoretical Approach --  |g 7.2.5.  |t Model-Based Clustering --  |g 7.2.6.  |t Density-Based Hierarchical Approach --  |g 7.2.7.  |t Fuzzy Clustering --  |g 7.2.8.  |t Rough-Fuzzy Clustering --  |g 7.3.  |t Quantitative and Qualitative Analysis --  |g 7.3.1.  |t Silhouette Index --  |g 7.3.2.  |t Eisen and Cluster Profile Plots --  |g 7.3.3.  |t Z Score --  |g 7.3.4.  |t Gene-Ontology-Based Analysis --  |g 7.4.  |t Description of Data Sets --  |g 7.4.1.  |t Fifteen Yeast Data --  |g 7.4.2.  |t Yeast Sporulation --  |g 7.4.3.  |t Auble Data --  |g 7.4.4.  |t Cho et al. Data --  |g 7.4.5.  |t Reduced Cell Cycle Data --  |g 7.5.  |t Experimental Results --  |g 7.5.1.  |t Performance Analysis of Rough-Fuzzy c-Means --  |g 7.5.2.  |t Comparative Analysis of Different c-Means --  |g 7.5.3.  |t Biological Significance Analysis --  |g 7.5.4.  |t Comparative Analysis of Different Algorithms --  |g 7.5.5.  |t Performance Analysis of Rough-Fuzzy-Possibilistic c-Means --  |g 7.6.  |t Conclusion and Discussion --  |t References --  |g 8.  |t Selection of Discriminative Genes from Microarray Data --  |g 8.1.  |t Introduction --  |g 8.2.  |t Evaluation Criteria for Gene Selection --  |g 8.2.1.  |t Statistical Tests --  |g 8.2.2.  |t Euclidean Distance --  |g 8.2.3.  |t Pearson's Correlation --  |g 8.2.4.  |t Mutual Information --  |g 8.2.5.  |t [ƒ]-Information Measures --  |g 8.3.  |t Approximation of Density Function --  |g 8.3.1.  |t Discretization --  |g 8.3.2.  |t Parzen Window Density Estimator --  |g 8.3.3.  |t Fuzzy Equivalence Partition Matrix --  |g 8.4.  |t Gene Selection using Information Measures --  |g 8.5.  |t Experimental Results --  |g 8.5.1.  |t Support Vector Machine --  |g 8.5.2.  |t Gene Expression Data Sets --  |g 8.5.3.  |t Performance Analysis of the FEPM --  |g 8.5.4.  |t Comparative Performance Analysis --  |g 8.6.  |t Conclusion and Discussion --  |t References --  |g 9.  |t Segmentation of Brain Magnetic Resonance Images --  |g 9.1.  |t Introduction --  |g 9.2.  |t Pixel Classification of Brain MR Images --  |g 9.2.1.  |t Performance on Real Brain MR Images --  |g 9.2.2.  |t Performance on Simulated Brain MR Images --  |g 9.3.  |t Segmentation of Brain MR Images --  |g 9.3.1.  |t Feature Extraction --  |g 9.3.2.  |t Selection of Initial Prototypes --  |g 9.4.  |t Experimental Results --  |g 9.4.1.  |t Illustrative Example --  |g 9.4.2.  |t Importance of Homogeneity and Edge Value --  |g 9.4.3.  |t Importance of Discriminant Analysis-Based Initialization --  |g 9.4.4.  |t Comparative Performance Analysis --  |g 9.5.  |t Conclusion and Discussion --  |t References. 
938 |a Coutts Information Services  |b COUT  |n 20635637 
938 |a EBL - Ebook Library  |b EBLB  |n EBL818439 
938 |a ebrary  |b EBRY  |n ebr10523999 
938 |a EBSCOhost  |b EBSC  |n 535815 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 342501 
938 |a YBP Library Services  |b YANK  |n 7318739 
938 |a YBP Library Services  |b YANK  |n 12670409 
938 |a YBP Library Services  |b YANK  |n 5559534 
994 |a 92  |b IZTAP