Cargando…

Dynamical Systems Method and Applications : Theoretical Developments and Numerical Examples.

Demonstrates the application of DSM to solve a broad range of operator equationsThe dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ramm, A. G. (Alexander G.)
Otros Autores: Hoang, Nguyen S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn772844549
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120116s2012 xx ob 001 0 eng d
010 |z  2011036456 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDXCP  |d N$T  |d E7B  |d OCLCQ  |d OCLCO  |d DEBSZ  |d OCLCQ  |d CDX  |d OCLCF  |d RECBK  |d DG1  |d COO  |d IUL  |d IDEBK  |d DEBBG  |d OCLCQ  |d DG1  |d COCUF  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d STF  |d WRM  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d CEF  |d ADU  |d UKCRE  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
019 |a 775437896  |a 775993065  |a 776492336  |a 817055771  |a 827773078  |a 864907024  |a 961530928  |a 962709412  |a 974770851  |a 974868427  |a 988507046  |a 991914623  |a 1037774686  |a 1038597452  |a 1041925319  |a 1053607104  |a 1083041467  |a 1100833462  |a 1153485713  |a 1162461258 
020 |a 9781118199596  |q (electronic bk.) 
020 |a 1118199596  |q (electronic bk.) 
020 |a 1118024281 
020 |a 9781118024287 
020 |a 9781118199602  |q (electronic bk.) 
020 |a 111819960X  |q (electronic bk.) 
020 |a 9781118199619  |q (electronic bk.) 
020 |a 1118199618  |q (electronic bk.) 
020 |a 1283425181 
020 |a 9781283425186 
020 |a 9786613425188 
020 |a 6613425184 
024 8 |a 9786613425188 
028 0 1 |a EB00062976  |b Recorded Books 
029 1 |a AU@  |b 000055786858 
029 1 |a CHBIS  |b 010880867 
029 1 |a CHNEW  |b 000938896 
029 1 |a CHVBK  |b 480191808 
029 1 |a CHVBK  |b 48090409X 
029 1 |a DEBBG  |b BV041910708 
029 1 |a DEBBG  |b BV044159651 
029 1 |a DEBSZ  |b 372825273 
029 1 |a DEBSZ  |b 431067767 
029 1 |a DEBSZ  |b 485012170 
029 1 |a NZ1  |b 14976190 
029 1 |a NZ1  |b 15915522 
035 |a (OCoLC)772844549  |z (OCoLC)775437896  |z (OCoLC)775993065  |z (OCoLC)776492336  |z (OCoLC)817055771  |z (OCoLC)827773078  |z (OCoLC)864907024  |z (OCoLC)961530928  |z (OCoLC)962709412  |z (OCoLC)974770851  |z (OCoLC)974868427  |z (OCoLC)988507046  |z (OCoLC)991914623  |z (OCoLC)1037774686  |z (OCoLC)1038597452  |z (OCoLC)1041925319  |z (OCoLC)1053607104  |z (OCoLC)1083041467  |z (OCoLC)1100833462  |z (OCoLC)1153485713  |z (OCoLC)1162461258 
037 |a 342518  |b MIL 
050 4 |a QA329 
072 7 |a SCI  |x 018000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 531.11 
049 |a UAMI 
100 1 |a Ramm, A. G.  |q (Alexander G.)  |1 https://id.oclc.org/worldcat/entity/E39PBJht6c7MRHvFtQDQJ4MVmd 
245 1 0 |a Dynamical Systems Method and Applications :  |b Theoretical Developments and Numerical Examples. 
260 |a Hoboken :  |b John Wiley & Sons,  |c 2012. 
300 |a 1 online resource (572 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
505 0 |a Dynamical Systems Method and Applications: Theoretical Developments and Numerical Examples; CONTENTS; List of Figures; List of Tables; Preface; Acknowledgments; PART I; 1 Introduction; 1.1 What this book is about; 1.2 What the DSM (Dynamical Systems Method) is; 1.3 The scope of the DSM; 1.4 A discussion of DSM; 1.5 Motivations; 2 III-posed problems; 2.1 Basic definitions. Examples; 2.2 Variational regularization; 2.3 Quasi-solutions; 2.4 Iterative regularization; 2.5 Quasi-inversion; 2.6 Dynamical systems method (DSM); 2.7 Variational regularization for nonlinear equations. 
505 8 |a 3 DSM for well-posed problems3.1 Every solvable well-posed problem can be solved by DSM; 3.2 DSM and Newton-type methods; 3.3 DSM and the modified Newton's method; 3.4 DSM and Gauss-Newton-type methods; 3.5 DSM and the gradient method; 3.6 DSM and the simple iterations method; 3.7 DSM and minimization methods; 3.8 Ulm's method; 4 DSM and linear ill-posed problems; 4.1 Equations with bounded operators; 4.2 Another approach; 4.3 Equations with unbounded operators; 4.4 Iterative methods; 4.5 Stable calculation of values of unbounded operators; 5 Some inequalities. 
505 8 |a 5.1 Basic nonlinear differential inequality5.2 An operator inequality; 5.3 A nonlinear inequality; 5.4 The Gronwall-type inequalities; 5.5 Another operator inequality; 5.6 A generalized version of the basic nonlinear inequality; 5.6.1 Formulations and results; 5.6.2 Applications; 5.7 Some nonlinear inequalities and applications; 5.7.1 Formulations and results; 5.7.2 Applications; 6 DSM for monotone operators; 6.1 Auxiliary results; 6.2 Formulation of the results and proofs; 6.3 The case of noisy data; 7 DSM for general nonlinear operator equations. 
505 8 |a 7.1 Formulation of the problem. The results and proofs7.2 Noisy data; 7.3 Iterative solution; 7.4 Stability of the iterative solution; 8 DSM for operators satisfying a spectral assumption; 8.1 Spectral assumption; 8.2 Existence of a solution to a nonlinear equation; 9 DSM in Banach spaces; 9.1 Well-posed problems; 9.2 Ill-posed problems; 9.3 Singular perturbation problem; 10 DSM and Newton-type methods without inversion of the derivative; 10.1 Well-posed problems; 10.2 Ill-posed problems; 11 DSM and unbounded operators; 11.1 Statement of the problem; 11.2 Ill-posed problems. 
505 8 |a 12 DSM and nonsmooth operators12.1 Formulation of the results; 12.2 Proofs; 13 DSM as a theoretical tool; 13.1 Surjectivity of nonlinear maps; 13.2 When is a local homeomorphism a global one?; 14 DSM and iterative methods; 14.1 Introduction; 14.2 Iterative solution of well-posed problems; 14.3 Iterative solution of ill-posed equations with monotone operator; 14.4 Iterative methods for solving nonlinear equations; 14.5 Ill-posed problems; 15 Numerical problems arising in applications; 15.1 Stable numerical differentiation; 15.2 Stable differentiation of piecewise-smooth functions. 
500 |a 15.3 Simultaneous approximation of a function and its derivative by interpolation polynomials. 
520 |a Demonstrates the application of DSM to solve a broad range of operator equationsThe dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and the. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differentiable dynamical systems. 
650 6 |a Dynamique différentiable. 
650 7 |a SCIENCE  |x Mechanics  |x Dynamics.  |2 bisacsh 
650 7 |a Differentiable dynamical systems  |2 fast 
700 1 |a Hoang, Nguyen S. 
758 |i has work:  |a Dynamical systems method and applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFCWxjQwqFgXwPkw3vfCkP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ramm, Alexander G.  |t Dynamical Systems Method and Applications : Theoretical Developments and Numerical Examples.  |d Hoboken : John Wiley & Sons, ©2012  |z 9781118024287 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=817767  |z Texto completo 
880 8 |6 505-00/(S  |a 17.2.2 On the choice of t0 -- 18 DSM for solving linear equations with finite-rank operators -- 18.1 Formulation and results -- 18.1.1 Exact data -- 18.1.2 Noisy data fδ -- 18.1.3 Discrepancy principle -- 18.1.4 An iterative scheme -- 18.1.5 An iterative scheme with a stopping rule based on a discrepancy principle -- 18.1.6 Computing uδ(tδ) -- 19 A discrepancy principle for equations with monotone continuous operators -- 19.1 Auxiliary results -- 19.2 A discrepancy principle -- 19.3 Applications -- 20 DSM of Newton-type for solving operator equations with minimal smoothness assumptions -- 20.1 DSM of Newton-type -- 20.1.1 Inverse function theorem -- 20.1.2 Convergence of the DSM -- 20.1.3 The Newton method -- 20.2 A justification of the DSM for global homeomorphisms -- 20.3 DSM of Newton-type for solving nonlinear equations with monotone operators -- 20.3.1 Existence of solution and a justification of the DSM for exact data -- 20.3.2 Solving equations with monotone operators when the data are noisy -- 20.4 Implicit Function Theorem and the DSM -- 20.4.1 Example -- 21 DSM of gradient type -- 21.1 Auxiliary results -- 21.2 DSM gradient method -- 21.3 An iterative scheme -- 22 DSM of simple iteration type -- 22.1 DSM of simple iteration type -- 22.1.1 Auxiliary results -- 22.1.2 Main results -- 22.2 An iterative scheme for solving equations with σ-inverse monotone operators -- 22.2.1 Auxiliary results -- 22.2.2 Main results -- 23 DSM for solving nonlinear operator equations in Banach spaces -- 23.1 Proofs -- 23.2 The case of continuous F'(u) -- PART III -- 24 Solving linear operator equations by the DSM -- 24.1 Numerical experiments with ill-conditioned linear algebraic systems -- 24.1.1 Numerical experiments with Hilbert matrix -- 24.2 Numerical experiments with Fredholm integral equations of the first kind. 
880 8 |6 505-00/(S  |a 7.2 Noisy data -- 7.3 Iterative solution -- 7.4 Stability of the iterative solution -- 8 DSM for operators satisfying a spectral assumption -- 8.1 Spectral assumption -- 8.2 Existence of a solution to a nonlinear equation -- 9 DSM in Banach spaces -- 9.1 Well-posed problems -- 9.2 Ill-posed problems -- 9.3 Singular perturbation problem -- 10 DSM and Newton-type methods without inversion of the derivative -- 10.1 Well-posed problems -- 10.2 Ill-posed problems -- 11 DSM and unbounded operators -- 11.1 Statement of the problem -- 11.2 Ill-posed problems -- 12 DSM and nonsmooth operators -- 12.1 Formulation of the results -- 12.2 Proofs -- 13 DSM as a theoretical tool -- 13.1 Surjectivity of nonlinear maps -- 13.2 When is a local homeomorphism a global one-- 14 DSM and iterative methods -- 14.1 Introduction -- 14.2 Iterative solution of well-posed problems -- 14.3 Iterative solution of ill-posed equations with monotone operator -- 14.4 Iterative methods for solving nonlinear equations -- 14.5 Ill-posed problems -- 15 Numerical problems arising in applications -- 15.1 Stable numerical differentiation -- 15.2 Stable differentiation of piecewise-smooth functions -- 15.3 Simultaneous approximation of a function and its derivative by interpolation polynomials -- 15.4 Other methods of stable differentiation -- 15.5 DSM and stable differentiation -- 15.6 Stable calculating singular integrals -- PART II -- 16 Solving linear operator equations by a Newton-type DSM -- 16.1 An iterative scheme for solving linear operator equations -- 16.2 DSM with fast decaying regularizing function -- 17 DSM of gradient type for solving linear operator equations -- 17.1 Formulations and Results -- 17.1.1 Exact data -- 17.1.2 Noisy data fδ -- 17.1.3 Discrepancy principle -- 17.2 Implementation of the Discrepancy Principle -- 17.2.1 Systems with known spectral decomposition. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH21627908 
938 |a Coutts Information Services  |b COUT  |n 20635654 
938 |a EBL - Ebook Library  |b EBLB  |n EBL817767 
938 |a ebrary  |b EBRY  |n ebr10526568 
938 |a EBSCOhost  |b EBSC  |n 421896 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 342518 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00062976 
938 |a YBP Library Services  |b YANK  |n 7292954 
938 |a YBP Library Services  |b YANK  |n 7311981 
938 |a YBP Library Services  |b YANK  |n 12670971 
994 |a 92  |b IZTAP