Cargando…

Causality : statistical perspectives and applications /

"This book looks at a broad collection of contributions from experts in their fields"--

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berzuini, Carlo
Otros Autores: Dawid, Philip, Bernardinelli, Luisa
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex. : Wiley, 2012.
Colección:Wiley series in probability and statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn772611169
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 120111s2012 enk ob 001 0 eng
010 |a  2012001517 
040 |a DLC  |b eng  |e pn  |c DLC  |d YDX  |d EBLCP  |d N$T  |d UIU  |d YDXCP  |d WAU  |d CDX  |d TEFOD  |d OCLCF  |d DEBSZ  |d DG1  |d E7B  |d DEBBG  |d DKDLA  |d TEFOD  |d OCLCQ  |d DG1  |d LIP  |d VGM  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d OCLCQ  |d COCUF  |d ICG  |d INT  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OL$  |d OCLCQ  |d DLC  |d OCLCQ  |d TSC  |d AFU  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 802330626  |a 808345307  |a 1200273567 
020 |a 9781119941736  |q (epub) 
020 |a 1119941733  |q (epub) 
020 |a 9781119945703  |q (pdf) 
020 |a 1119945704  |q (pdf) 
020 |a 9781119941743  |q (mobi) 
020 |a 1119941741  |q (mobi) 
020 |a 9781119945710  |q (electronic bk.) 
020 |a 1119945712  |q (electronic bk.) 
020 |a 0470665564 
020 |a 9780470665565 
020 |z 9780470665565  |q (hardback) 
024 8 |a 9786613656162 
029 1 |a AU@  |b 000048454835 
029 1 |a AU@  |b 000052905001 
029 1 |a CHNEW  |b 000619392 
029 1 |a CHNEW  |b 000938887 
029 1 |a CHVBK  |b 480191719 
029 1 |a DEBBG  |b BV040887623 
029 1 |a DEBBG  |b BV043393974 
029 1 |a DEBBG  |b BV044165579 
029 1 |a DEBSZ  |b 397314809 
029 1 |a DEBSZ  |b 425885313 
029 1 |a DEBSZ  |b 431146381 
029 1 |a DEBSZ  |b 44930390X 
029 1 |a NZ1  |b 14517733 
035 |a (OCoLC)772611169  |z (OCoLC)802330626  |z (OCoLC)808345307  |z (OCoLC)1200273567 
037 |a 365616  |b MIL 
037 |a 4BA3A1AD-594C-4B71-AF91-82C03E85DEE4  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QA276.8 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.5/44  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Berzuini, Carlo. 
245 1 0 |a Causality :  |b statistical perspectives and applications /  |c Carlo Berzuini, Philip Dawid, Luisa Bernardinelli. 
264 1 |a Chichester, West Sussex. :  |b Wiley,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Wiley series in probability and statistics 
520 |a "This book looks at a broad collection of contributions from experts in their fields"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
505 0 |6 880-01  |a Statistical causality : some historical remarks -- The language of potential outcomes -- Structural equations, graphs and interventions -- The decision-theoretic approach to causal -- Causal inference as a prediction problem : assumptions, identification, and evidence synthesis -- Graph-based criteria of identifiability of causal questions -- Causal inference from observational data : a Bayesian predictive approach -- Causal inference from observing sequences of actions -- Causal effects and natural laws : towards a conceptualization of causal counterfactuals -- For non-manipulable exposures, with application to the effects of race and sex -- Cross-classifications by joint potential outcomes -- Estimation of direct and indirect effects -- The mediation formula : a guide to the assessment of causal pathways in nonlinear models -- The sufficient cause framework in statistics, philosophy and the biomedical and social sciences -- Inference about biological mechanism on the basis of epidemiological data -- Ion channels and multiple sclerosis -- Supplementary variables for causal estimation -- Time-varying confounding : some practical considerations in a likelihood framework -- Natural experiments as a means of testing causal inferences -- Nonreactive and purely reactive doses in observational studies -- Evaluation of potential mediators in randomized trials of complex interventions (psychotherapies) -- Causal inference in clinical trials -- Granger causality and causal inference in time series analysis -- Dynamic molecular networks and mechanisms iIn the biosciences : a statistical framework. 
588 0 |a Print version record and CIP data provided by publisher. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Estimation theory. 
650 0 |a Causation. 
650 0 |a Causality (Physics) 
650 6 |a Théorie de l'estimation. 
650 6 |a Causalité (Physique) 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Causality (Physics)  |2 fast 
650 7 |a Causation  |2 fast 
650 7 |a Estimation theory  |2 fast 
700 1 |a Dawid, Philip. 
700 1 |a Bernardinelli, Luisa. 
776 0 8 |i Print version:  |a Berzuini, Carlo.  |t Causality.  |d Hoboken, N.J. : Wiley, 2012  |z 9780470665565  |w (DLC) 2011049795 
830 0 |a Wiley series in probability and statistics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=927597  |z Texto completo 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Statistical causality: Some historical remarks /  |r D.R. Cox --  |g 1.1.  |t Introduction --  |g 1.2.  |t Key issues --  |g 1.3.  |t Rothamsted view --  |g 1.4.  |t earlier controversy and its implications --  |g 1.5.  |t Three versions of causality --  |g 1.6.  |t Conclusion --  |t References --  |g 2.  |t language of potential outcomes /  |r Arvid Sjolander --  |g 2.1.  |t Introduction --  |g 2.2.  |t Definition of causal effects through potential outcomes --  |g 2.2.1.  |t Subject-specific causal effects --  |g 2.2.2.  |t Population causal effects --  |g 2.2.3.  |t Association versus causation --  |g 2.3.  |t Identification of population causal effects --  |g 2.3.1.  |t Randomized experiments --  |g 2.3.2.  |t Observational studies --  |g 2.4.  |t Discussion --  |t References --  |g 3.  |t Structural equations, graphs and interventions /  |r Ilya Shpitser --  |g 3.1.  |t Introduction --  |g 3.2.  |t Structural equations, graphs, and interventions --  |g 3.2.1.  |t Graph terminology --  |g 3.2.2.  |t Markovian models --  |g 3.2.3.  |t Latent projections and semi-Markovian models --  |g 3.2.4.  |t Interventions in semi-Markovian models --  |g 3.2.5.  |t Counterfactual distributions in NPSEMs --  |g 3.2.6.  |t Causal diagrams and counterfactual independence --  |g 3.2.7.  |t Relation to potential outcomes --  |t References --  |g 4.  |t decision-theoretic approach to causal inference /  |r Philip Dawid --  |g 4.1.  |t Introduction --  |g 4.2.  |t Decision theory and causality --  |g 4.2.1.  |t simple decision problem --  |g 4.2.2.  |t Causal inference --  |g 4.3.  |t No confounding --  |g 4.4.  |t Confounding --  |g 4.4.1.  |t Unconfounding --  |g 4.4.2.  |t Nonconfounding --  |g 4.4.3.  |t Back-door formula --  |g 4.5.  |t Propensity analysis --  |g 4.6.  |t Instrumental variable --  |g 4.6.1.  |t Linear model --  |g 4.6.2.  |t Binary variables --  |g 4.7.  |t Effect of treatment of the treated --  |g 4.8.  |t Connections and contrasts --  |g 4.8.1.  |t Potential responses --  |g 4.8.2.  |t Causal graphs --  |g 4.9.  |t Postscript --  |t Acknowledgements --  |t References --  |g 5.  |t Causal inference as a prediction problem: Assumptions, identification and evidence synthesis /  |r Sander Greenland --  |g 5.1.  |t Introduction --  |g 5.2.  |t brief commentary on developments since 1970 --  |g 5.2.1.  |t Potential outcomes and missing data --  |g 5.2.2.  |t prognostic view --  |g 5.3.  |t Ambiguities of observational extensions --  |g 5.4.  |t Causal diagrams and structural equations --  |g 5.5.  |t Compelling versus plausible assumptions, models and inferences --  |g 5.6.  |t Nonidentification and the curse of dimensionality --  |g 5.7.  |t Identification in practice --  |g 5.8.  |t Identification and bounded rationality --  |g 5.9.  |t Conclusion --  |t Acknowledgments --  |t References --  |g 6.  |t Graph-based criteria of identifiability of causal questions /  |r Ilya Shpitser --  |g 6.1.  |t Introduction --  |g 6.2.  |t Interventions from observations --  |g 6.3.  |t back-door criterion, conditional ignorability, and covariate adjustment --  |g 6.4.  |t front-door criterion --  |g 6.5.  |t Do-calculus --  |g 6.6.  |t General identification --  |g 6.7.  |t Dormant independences and post-truncation constraints --  |t References --  |g 7.  |t Causal inference from observational data: A Bayesian predictive approach /  |r Elja Arjas --  |g 7.1.  |t Background --  |g 7.2.  |t model prototype --  |g 7.3.  |t Extension to sequential regimes --  |g 7.4.  |t Providing a causal interpretation: Predictive inference from data --  |g 7.5.  |t Discussion --  |t Acknowledgement --  |t References --  |g 8.  |t Assessing dynamic treatment strategies /  |r Vanessa Didelez --  |g 8.1.  |t Introduction --  |g 8.2.  |t Motivating example --  |g 8.3.  |t Descriptive versus causal inference --  |g 8.4.  |t Notation and problem definition --  |g 8.5.  |t HIV example continued --  |g 8.6.  |t Latent variables --  |g 8.7.  |t Conditions for sequential plan identifiability --  |g 8.7.1.  |t Stability --  |g 8.7.2.  |t Positivity --  |g 8.8.  |t Graphical representations of dynamic plans --  |g 8.9.  |t Abdominal aortic aneurysm surveillance --  |g 8.10.  |t Statistical inference and computation --  |g 8.11.  |t Transparent actions --  |g 8.12.  |t Refinements --  |g 8.13.  |t Discussion --  |t Acknowledgements --  |t References --  |g 9.  |t Causal effects and natural laws: Towards a conceptualization of causal counterfactuals for nonmanipulable exposures, with application to the effects of race and sex /  |r Miguel A. Hernan --  |g 9.1.  |t Introduction --  |g 9.2.  |t Laws of nature and contrary to fact statements --  |g 9.3.  |t Association and causation in the social and biomedical sciences --  |g 9.4.  |t Manipulation and counterfactuals --  |g 9.5.  |t Natural laws and causal effects --  |g 9.6.  |t Consequences of randomization --  |g 9.7.  |t On the causal effects of sex and race --  |g 9.8.  |t Discussion --  |t Acknowledgements --  |t References --  |g 10.  |t Cross-classifications by joint potential outcomes /  |r Arvid Sjolander --  |g 10.1.  |t Introduction --  |g 10.2.  |t Bounds for the causal treatment effect in randomized trials with imperfect compliance --  |g 10.3.  |t Identifying the compiler causal effect in randomized trials with imperfect compliance --  |g 10.4.  |t Defining the appropriate causal effect in studies suffering from truncation by death --  |g 10.5.  |t Discussion --  |t References --  |g 11.  |t Estimation of direct and indirect effects /  |r Stijn Vansteelandt --  |g 11.1.  |t Introduction --  |g 11.2.  |t Identification of the direct and indirect effect --  |g 11.2.1.  |t Definitions --  |g 11.2.2.  |t Identification --  |g 11.3.  |t Estimation of controlled direct effects --  |g 11.3.1.  |t G-computation --  |g 11.3.2.  |t Inverse probability of treatment weighting --  |g 11.3.3.  |t G-estimation for additive and multiplicative models --  |g 11.3.4.  |t G-estimation for logistic models --  |g 11.3.5.  |t Case-control studies --  |g 11.3.6.  |t G-estimation for additive hazard models --  |g 11.4.  |t Estimation of natural direct and indirect effects --  |g 11.5.  |t Discussion --  |t Acknowledgements --  |t References --  |g 12.  |t mediation formula: A guide to the assessment of causal pathways in nonlinear models /  |r Judea Pearl --  |g 12.1.  |t Mediation: Direct and indirect effects --  |g 12.1.1.  |t Direct versus total effects --  |g 12.1.2.  |t Controlled direct effects --  |g 12.1.3.  |t Natural direct effects --  |g 12.1.4.  |t Indirect effects --  |g 12.1.5.  |t Effect decomposition --  |g 12.2.  |t mediation formula: A simple solution to a thorny problem --  |g 12.2.1.  |t Mediation in nonparametric models --  |g 12.2.2.  |t Mediation effects in linear, logistic, and probit models --  |g 12.2.3.  |t Special cases of mediation models --  |g 12.2.4.  |t Numerical example --  |g 12.3.  |t Relation to other methods --  |g 12.3.1.  |t Methods based on differences and products --  |g 12.3.2.  |t Relation to the principal-strata direct effect --  |g 12.4.  |t Conclusions --  |t Acknowledgments --  |t References --  |g 13.  |t sufficient cause framework in statistics, philosophy and the biomedical and social sciences /  |r Tyler J. VanderWeele --  |g 13.1.  |t Introduction --  |g 13.2.  |t sufficient cause framework in philosophy --  |g 13.3.  |t sufficient cause framework in epidemiology and biomedicine --  |g 13.4.  |t sufficient cause framework in statistics --  |g 13.5.  |t sufficient cause framework in the social sciences --  |g 13.6.  |t Other notions of sufficiency and necessity in causal inference --  |g 13.7.  |t Conclusion --  |t Acknowledgements --  |t References --  |g 14.  |t Analysis of interaction for identifying causal mechanisms /  |r Miles Parkes --  |g 14.1.  |t Introduction --  |g 14.2.  |t What is a mechanism--  |g 14.3.  |t Statistical versus mechanistic interaction --  |g 14.4.  |t Illustrative example --  |g 14.5.  |t Mechanistic interaction defined --  |g 14.6.  |t Epistasis --  |g 14.7.  |t Excess risk and superadditivity --  |g 14.8.  |t Conditions under which excess risk and superadditivity indicate the presence of mechanistic interaction --  |g 14.9.  |t Collapsibility --  |g 14.10.  |t Back to the illustrative study --  |g 14.11.  |t Alternative approaches --  |g 14.12.  |t Discussion --  |t Ethics statement --  |t Financial disclosure --  |t References --  |g 15.  |t Ion channels as a possible mechanism of neurodegeneration in multiple sclerosis /  |r Roberta Pastorino --  |g 15.1.  |t Introduction --  |g 15.2.  |t Background --  |g 15.3.  |t scientific hypothesis --  |g 15.4.  |t Data --  |g 15.5.  |t simple preliminary analysis --  |g 15.6.  |t Testing for qualitative interaction --  |g 15.7.  |t Discussion --  |t Acknowledgments --  |t References --  |g 16.  |t Supplementary variables for causal estimation /  |r Roland R.  
880 0 0 |t Ramsahai --  |g 16.1.  |t Introduction --  |g 16.2.  |t Multiple expressions for causal effect --  |g 16.3.  |t Asymptotic variance of causal estimators --  |g 16.4.  |t Comparison of causal estimators --  |g 16.4.1.  |t Supplement C with L or not --  |g 16.4.2.  |t Supplement L with C or not --  |g 16.4.3.  |t Replace C with L or not --  |g 16.5.  |t Discussion --  |t Acknowledgements --  |t Appendices --  |g 16.A.  |t Estimator given all X's recorded --  |g 16.B.  |t Derivations of asymptotic variances --  |g 16.C.  |t Expressions with correlation coefficients --  |g 16.D.  |t Derivation of ΔII's --  |g 16.E.  |t Relation between ρ2rl/t and ρ2rl/c --  |t References --  |g 17.  |t Time-varying confounding: Some practical considerations in a likelihood framework /  |r Simon Cousens --  |g 17.1.  |t Introduction --  |g 17.2.  |t General setting --  |g 17.2.1.  |t Notation --  |g 17.2.2.  |t Observed data structure --  |g 17.2.3.  |t Intervention strategies --  |g 17.2.4.  |t Potential outcomes --  |g 17.2.5.  |t Time-to-event outcomes --  |g 17.2.6.  |t Causal estimands --  |g 17.3.  |t Identifying assumptions --  |g 17.4.  |t G-computation formula --  |g 17.4.1.  |t formula --  |g 17.4.2.  |t Plug-in regression estimation --  |g 17.5.  |t Implementation by Monte Carlo simulation --  |g 17.5.1.  |t Simulating an end-of-study outcome --  |g 17.5.2.  |t Simulating a time-to-event outcome --  |g 17.5.3.  |t Inference --  |g 17.5.4.  |t Losses to follow-up --  |g 17.5.5.  |t Software --  |g 17.6.  |t Analyses of simulated data --  |g 17.6.1.  |t data --  |g 17.6.2.  |t Regimes to be compared --  |g 17.6.3.  |t Parametric modelling choices --  |g 17.6.4.  |t Results --  |g 17.7.  |t Further considerations --  |g 17.7.1.  |t Parametric model misspecification --  |g 17.7.2.  |t Competing events --  |g 17.7.3.  |t Unbalanced measurement times --  |g 17.8.  |t Summary --  |t References --  |g 18.  |t Ǹatural experiments' as a means of testing causal inferences /  |r Michael Rutter --  |g 18.1.  |t Introduction --  |g 18.2.  |t Noncausal interpretations of an association. 
938 |a Coutts Information Services  |b COUT  |n 18015001 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4041133 
938 |a EBL - Ebook Library  |b EBLB  |n EBL927597 
938 |a ebrary  |b EBRY  |n ebr10580236 
938 |a EBSCOhost  |b EBSC  |n 458260 
938 |a YBP Library Services  |b YANK  |n 9341154 
938 |a YBP Library Services  |b YANK  |n 7652110 
938 |a YBP Library Services  |b YANK  |n 12678286 
994 |a 92  |b IZTAP