|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn772611169 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
120111s2012 enk ob 001 0 eng |
010 |
|
|
|a 2012001517
|
040 |
|
|
|a DLC
|b eng
|e pn
|c DLC
|d YDX
|d EBLCP
|d N$T
|d UIU
|d YDXCP
|d WAU
|d CDX
|d TEFOD
|d OCLCF
|d DEBSZ
|d DG1
|d E7B
|d DEBBG
|d DKDLA
|d TEFOD
|d OCLCQ
|d DG1
|d LIP
|d VGM
|d ZCU
|d MERUC
|d OCLCQ
|d U3W
|d OCLCQ
|d COCUF
|d ICG
|d INT
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d OL$
|d OCLCQ
|d DLC
|d OCLCQ
|d TSC
|d AFU
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 802330626
|a 808345307
|a 1200273567
|
020 |
|
|
|a 9781119941736
|q (epub)
|
020 |
|
|
|a 1119941733
|q (epub)
|
020 |
|
|
|a 9781119945703
|q (pdf)
|
020 |
|
|
|a 1119945704
|q (pdf)
|
020 |
|
|
|a 9781119941743
|q (mobi)
|
020 |
|
|
|a 1119941741
|q (mobi)
|
020 |
|
|
|a 9781119945710
|q (electronic bk.)
|
020 |
|
|
|a 1119945712
|q (electronic bk.)
|
020 |
|
|
|a 0470665564
|
020 |
|
|
|a 9780470665565
|
020 |
|
|
|z 9780470665565
|q (hardback)
|
024 |
8 |
|
|a 9786613656162
|
029 |
1 |
|
|a AU@
|b 000048454835
|
029 |
1 |
|
|a AU@
|b 000052905001
|
029 |
1 |
|
|a CHNEW
|b 000619392
|
029 |
1 |
|
|a CHNEW
|b 000938887
|
029 |
1 |
|
|a CHVBK
|b 480191719
|
029 |
1 |
|
|a DEBBG
|b BV040887623
|
029 |
1 |
|
|a DEBBG
|b BV043393974
|
029 |
1 |
|
|a DEBBG
|b BV044165579
|
029 |
1 |
|
|a DEBSZ
|b 397314809
|
029 |
1 |
|
|a DEBSZ
|b 425885313
|
029 |
1 |
|
|a DEBSZ
|b 431146381
|
029 |
1 |
|
|a DEBSZ
|b 44930390X
|
029 |
1 |
|
|a NZ1
|b 14517733
|
035 |
|
|
|a (OCoLC)772611169
|z (OCoLC)802330626
|z (OCoLC)808345307
|z (OCoLC)1200273567
|
037 |
|
|
|a 365616
|b MIL
|
037 |
|
|
|a 4BA3A1AD-594C-4B71-AF91-82C03E85DEE4
|b OverDrive, Inc.
|n http://www.overdrive.com
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA276.8
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
0 |
|a 519.5/44
|2 23
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Berzuini, Carlo.
|
245 |
1 |
0 |
|a Causality :
|b statistical perspectives and applications /
|c Carlo Berzuini, Philip Dawid, Luisa Bernardinelli.
|
264 |
|
1 |
|a Chichester, West Sussex. :
|b Wiley,
|c 2012.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Wiley series in probability and statistics
|
520 |
|
|
|a "This book looks at a broad collection of contributions from experts in their fields"--
|c Provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|6 880-01
|a Statistical causality : some historical remarks -- The language of potential outcomes -- Structural equations, graphs and interventions -- The decision-theoretic approach to causal -- Causal inference as a prediction problem : assumptions, identification, and evidence synthesis -- Graph-based criteria of identifiability of causal questions -- Causal inference from observational data : a Bayesian predictive approach -- Causal inference from observing sequences of actions -- Causal effects and natural laws : towards a conceptualization of causal counterfactuals -- For non-manipulable exposures, with application to the effects of race and sex -- Cross-classifications by joint potential outcomes -- Estimation of direct and indirect effects -- The mediation formula : a guide to the assessment of causal pathways in nonlinear models -- The sufficient cause framework in statistics, philosophy and the biomedical and social sciences -- Inference about biological mechanism on the basis of epidemiological data -- Ion channels and multiple sclerosis -- Supplementary variables for causal estimation -- Time-varying confounding : some practical considerations in a likelihood framework -- Natural experiments as a means of testing causal inferences -- Nonreactive and purely reactive doses in observational studies -- Evaluation of potential mediators in randomized trials of complex interventions (psychotherapies) -- Causal inference in clinical trials -- Granger causality and causal inference in time series analysis -- Dynamic molecular networks and mechanisms iIn the biosciences : a statistical framework.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Estimation theory.
|
650 |
|
0 |
|a Causation.
|
650 |
|
0 |
|a Causality (Physics)
|
650 |
|
6 |
|a Théorie de l'estimation.
|
650 |
|
6 |
|a Causalité (Physique)
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Causality (Physics)
|2 fast
|
650 |
|
7 |
|a Causation
|2 fast
|
650 |
|
7 |
|a Estimation theory
|2 fast
|
700 |
1 |
|
|a Dawid, Philip.
|
700 |
1 |
|
|a Bernardinelli, Luisa.
|
776 |
0 |
8 |
|i Print version:
|a Berzuini, Carlo.
|t Causality.
|d Hoboken, N.J. : Wiley, 2012
|z 9780470665565
|w (DLC) 2011049795
|
830 |
|
0 |
|a Wiley series in probability and statistics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=927597
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t Statistical causality: Some historical remarks /
|r D.R. Cox --
|g 1.1.
|t Introduction --
|g 1.2.
|t Key issues --
|g 1.3.
|t Rothamsted view --
|g 1.4.
|t earlier controversy and its implications --
|g 1.5.
|t Three versions of causality --
|g 1.6.
|t Conclusion --
|t References --
|g 2.
|t language of potential outcomes /
|r Arvid Sjolander --
|g 2.1.
|t Introduction --
|g 2.2.
|t Definition of causal effects through potential outcomes --
|g 2.2.1.
|t Subject-specific causal effects --
|g 2.2.2.
|t Population causal effects --
|g 2.2.3.
|t Association versus causation --
|g 2.3.
|t Identification of population causal effects --
|g 2.3.1.
|t Randomized experiments --
|g 2.3.2.
|t Observational studies --
|g 2.4.
|t Discussion --
|t References --
|g 3.
|t Structural equations, graphs and interventions /
|r Ilya Shpitser --
|g 3.1.
|t Introduction --
|g 3.2.
|t Structural equations, graphs, and interventions --
|g 3.2.1.
|t Graph terminology --
|g 3.2.2.
|t Markovian models --
|g 3.2.3.
|t Latent projections and semi-Markovian models --
|g 3.2.4.
|t Interventions in semi-Markovian models --
|g 3.2.5.
|t Counterfactual distributions in NPSEMs --
|g 3.2.6.
|t Causal diagrams and counterfactual independence --
|g 3.2.7.
|t Relation to potential outcomes --
|t References --
|g 4.
|t decision-theoretic approach to causal inference /
|r Philip Dawid --
|g 4.1.
|t Introduction --
|g 4.2.
|t Decision theory and causality --
|g 4.2.1.
|t simple decision problem --
|g 4.2.2.
|t Causal inference --
|g 4.3.
|t No confounding --
|g 4.4.
|t Confounding --
|g 4.4.1.
|t Unconfounding --
|g 4.4.2.
|t Nonconfounding --
|g 4.4.3.
|t Back-door formula --
|g 4.5.
|t Propensity analysis --
|g 4.6.
|t Instrumental variable --
|g 4.6.1.
|t Linear model --
|g 4.6.2.
|t Binary variables --
|g 4.7.
|t Effect of treatment of the treated --
|g 4.8.
|t Connections and contrasts --
|g 4.8.1.
|t Potential responses --
|g 4.8.2.
|t Causal graphs --
|g 4.9.
|t Postscript --
|t Acknowledgements --
|t References --
|g 5.
|t Causal inference as a prediction problem: Assumptions, identification and evidence synthesis /
|r Sander Greenland --
|g 5.1.
|t Introduction --
|g 5.2.
|t brief commentary on developments since 1970 --
|g 5.2.1.
|t Potential outcomes and missing data --
|g 5.2.2.
|t prognostic view --
|g 5.3.
|t Ambiguities of observational extensions --
|g 5.4.
|t Causal diagrams and structural equations --
|g 5.5.
|t Compelling versus plausible assumptions, models and inferences --
|g 5.6.
|t Nonidentification and the curse of dimensionality --
|g 5.7.
|t Identification in practice --
|g 5.8.
|t Identification and bounded rationality --
|g 5.9.
|t Conclusion --
|t Acknowledgments --
|t References --
|g 6.
|t Graph-based criteria of identifiability of causal questions /
|r Ilya Shpitser --
|g 6.1.
|t Introduction --
|g 6.2.
|t Interventions from observations --
|g 6.3.
|t back-door criterion, conditional ignorability, and covariate adjustment --
|g 6.4.
|t front-door criterion --
|g 6.5.
|t Do-calculus --
|g 6.6.
|t General identification --
|g 6.7.
|t Dormant independences and post-truncation constraints --
|t References --
|g 7.
|t Causal inference from observational data: A Bayesian predictive approach /
|r Elja Arjas --
|g 7.1.
|t Background --
|g 7.2.
|t model prototype --
|g 7.3.
|t Extension to sequential regimes --
|g 7.4.
|t Providing a causal interpretation: Predictive inference from data --
|g 7.5.
|t Discussion --
|t Acknowledgement --
|t References --
|g 8.
|t Assessing dynamic treatment strategies /
|r Vanessa Didelez --
|g 8.1.
|t Introduction --
|g 8.2.
|t Motivating example --
|g 8.3.
|t Descriptive versus causal inference --
|g 8.4.
|t Notation and problem definition --
|g 8.5.
|t HIV example continued --
|g 8.6.
|t Latent variables --
|g 8.7.
|t Conditions for sequential plan identifiability --
|g 8.7.1.
|t Stability --
|g 8.7.2.
|t Positivity --
|g 8.8.
|t Graphical representations of dynamic plans --
|g 8.9.
|t Abdominal aortic aneurysm surveillance --
|g 8.10.
|t Statistical inference and computation --
|g 8.11.
|t Transparent actions --
|g 8.12.
|t Refinements --
|g 8.13.
|t Discussion --
|t Acknowledgements --
|t References --
|g 9.
|t Causal effects and natural laws: Towards a conceptualization of causal counterfactuals for nonmanipulable exposures, with application to the effects of race and sex /
|r Miguel A. Hernan --
|g 9.1.
|t Introduction --
|g 9.2.
|t Laws of nature and contrary to fact statements --
|g 9.3.
|t Association and causation in the social and biomedical sciences --
|g 9.4.
|t Manipulation and counterfactuals --
|g 9.5.
|t Natural laws and causal effects --
|g 9.6.
|t Consequences of randomization --
|g 9.7.
|t On the causal effects of sex and race --
|g 9.8.
|t Discussion --
|t Acknowledgements --
|t References --
|g 10.
|t Cross-classifications by joint potential outcomes /
|r Arvid Sjolander --
|g 10.1.
|t Introduction --
|g 10.2.
|t Bounds for the causal treatment effect in randomized trials with imperfect compliance --
|g 10.3.
|t Identifying the compiler causal effect in randomized trials with imperfect compliance --
|g 10.4.
|t Defining the appropriate causal effect in studies suffering from truncation by death --
|g 10.5.
|t Discussion --
|t References --
|g 11.
|t Estimation of direct and indirect effects /
|r Stijn Vansteelandt --
|g 11.1.
|t Introduction --
|g 11.2.
|t Identification of the direct and indirect effect --
|g 11.2.1.
|t Definitions --
|g 11.2.2.
|t Identification --
|g 11.3.
|t Estimation of controlled direct effects --
|g 11.3.1.
|t G-computation --
|g 11.3.2.
|t Inverse probability of treatment weighting --
|g 11.3.3.
|t G-estimation for additive and multiplicative models --
|g 11.3.4.
|t G-estimation for logistic models --
|g 11.3.5.
|t Case-control studies --
|g 11.3.6.
|t G-estimation for additive hazard models --
|g 11.4.
|t Estimation of natural direct and indirect effects --
|g 11.5.
|t Discussion --
|t Acknowledgements --
|t References --
|g 12.
|t mediation formula: A guide to the assessment of causal pathways in nonlinear models /
|r Judea Pearl --
|g 12.1.
|t Mediation: Direct and indirect effects --
|g 12.1.1.
|t Direct versus total effects --
|g 12.1.2.
|t Controlled direct effects --
|g 12.1.3.
|t Natural direct effects --
|g 12.1.4.
|t Indirect effects --
|g 12.1.5.
|t Effect decomposition --
|g 12.2.
|t mediation formula: A simple solution to a thorny problem --
|g 12.2.1.
|t Mediation in nonparametric models --
|g 12.2.2.
|t Mediation effects in linear, logistic, and probit models --
|g 12.2.3.
|t Special cases of mediation models --
|g 12.2.4.
|t Numerical example --
|g 12.3.
|t Relation to other methods --
|g 12.3.1.
|t Methods based on differences and products --
|g 12.3.2.
|t Relation to the principal-strata direct effect --
|g 12.4.
|t Conclusions --
|t Acknowledgments --
|t References --
|g 13.
|t sufficient cause framework in statistics, philosophy and the biomedical and social sciences /
|r Tyler J. VanderWeele --
|g 13.1.
|t Introduction --
|g 13.2.
|t sufficient cause framework in philosophy --
|g 13.3.
|t sufficient cause framework in epidemiology and biomedicine --
|g 13.4.
|t sufficient cause framework in statistics --
|g 13.5.
|t sufficient cause framework in the social sciences --
|g 13.6.
|t Other notions of sufficiency and necessity in causal inference --
|g 13.7.
|t Conclusion --
|t Acknowledgements --
|t References --
|g 14.
|t Analysis of interaction for identifying causal mechanisms /
|r Miles Parkes --
|g 14.1.
|t Introduction --
|g 14.2.
|t What is a mechanism--
|g 14.3.
|t Statistical versus mechanistic interaction --
|g 14.4.
|t Illustrative example --
|g 14.5.
|t Mechanistic interaction defined --
|g 14.6.
|t Epistasis --
|g 14.7.
|t Excess risk and superadditivity --
|g 14.8.
|t Conditions under which excess risk and superadditivity indicate the presence of mechanistic interaction --
|g 14.9.
|t Collapsibility --
|g 14.10.
|t Back to the illustrative study --
|g 14.11.
|t Alternative approaches --
|g 14.12.
|t Discussion --
|t Ethics statement --
|t Financial disclosure --
|t References --
|g 15.
|t Ion channels as a possible mechanism of neurodegeneration in multiple sclerosis /
|r Roberta Pastorino --
|g 15.1.
|t Introduction --
|g 15.2.
|t Background --
|g 15.3.
|t scientific hypothesis --
|g 15.4.
|t Data --
|g 15.5.
|t simple preliminary analysis --
|g 15.6.
|t Testing for qualitative interaction --
|g 15.7.
|t Discussion --
|t Acknowledgments --
|t References --
|g 16.
|t Supplementary variables for causal estimation /
|r Roland R.
|
880 |
0 |
0 |
|t Ramsahai --
|g 16.1.
|t Introduction --
|g 16.2.
|t Multiple expressions for causal effect --
|g 16.3.
|t Asymptotic variance of causal estimators --
|g 16.4.
|t Comparison of causal estimators --
|g 16.4.1.
|t Supplement C with L or not --
|g 16.4.2.
|t Supplement L with C or not --
|g 16.4.3.
|t Replace C with L or not --
|g 16.5.
|t Discussion --
|t Acknowledgements --
|t Appendices --
|g 16.A.
|t Estimator given all X's recorded --
|g 16.B.
|t Derivations of asymptotic variances --
|g 16.C.
|t Expressions with correlation coefficients --
|g 16.D.
|t Derivation of ΔII's --
|g 16.E.
|t Relation between ρ2rl/t and ρ2rl/c --
|t References --
|g 17.
|t Time-varying confounding: Some practical considerations in a likelihood framework /
|r Simon Cousens --
|g 17.1.
|t Introduction --
|g 17.2.
|t General setting --
|g 17.2.1.
|t Notation --
|g 17.2.2.
|t Observed data structure --
|g 17.2.3.
|t Intervention strategies --
|g 17.2.4.
|t Potential outcomes --
|g 17.2.5.
|t Time-to-event outcomes --
|g 17.2.6.
|t Causal estimands --
|g 17.3.
|t Identifying assumptions --
|g 17.4.
|t G-computation formula --
|g 17.4.1.
|t formula --
|g 17.4.2.
|t Plug-in regression estimation --
|g 17.5.
|t Implementation by Monte Carlo simulation --
|g 17.5.1.
|t Simulating an end-of-study outcome --
|g 17.5.2.
|t Simulating a time-to-event outcome --
|g 17.5.3.
|t Inference --
|g 17.5.4.
|t Losses to follow-up --
|g 17.5.5.
|t Software --
|g 17.6.
|t Analyses of simulated data --
|g 17.6.1.
|t data --
|g 17.6.2.
|t Regimes to be compared --
|g 17.6.3.
|t Parametric modelling choices --
|g 17.6.4.
|t Results --
|g 17.7.
|t Further considerations --
|g 17.7.1.
|t Parametric model misspecification --
|g 17.7.2.
|t Competing events --
|g 17.7.3.
|t Unbalanced measurement times --
|g 17.8.
|t Summary --
|t References --
|g 18.
|t Ǹatural experiments' as a means of testing causal inferences /
|r Michael Rutter --
|g 18.1.
|t Introduction --
|g 18.2.
|t Noncausal interpretations of an association.
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 18015001
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4041133
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL927597
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10580236
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 458260
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9341154
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7652110
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12678286
|
994 |
|
|
|a 92
|b IZTAP
|