Cargando…

Missing Data Methods : Cross-Sectional Methods and Applications.

Volume 27 of Advances in Econometrics, entitled Missing Data Methods, contains 16 chapters authored by specialists in the field, covering topics such as: Missing-Data Imputation in Nonstationary Panel Data Models; Markov Switching Models in Empirical Finance; Bayesian Analysis of Multivariate Sample...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Drukker, David M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bradford : Emerald Group Publishing Limited, 2011.
Colección:Advances in Econometrics, 27.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Missing Data Methods: Cross-sectional Methods and Applications; Copyright Page; Contents; List of contributors; Introduction; Cross-sectional methods and applications; Acknowledgments; References; The elephant in the corner: a cautionary tale about measurement error in treatment effects models; Introduction; Consequences of measurement error; Evidence of measurement error; Causal inference under conditional independence; Estimation in the Absence of Measurement Error; Monte carlo study; Results; Conclusion; Notes; Acknowledgments; References.
  • Recent developments in semiparametric and nonparametric estimation of panel data models with incomplete information: A selected reviewIntroduction; Models with incomplete data; Measurement Error; Concluding remarks; Notes; References; Likelihood-based estimators for endogenous or truncated samples in standard stratified sampling; Introduction; Four types of estimators; A simulation study; Conclusions; ACKNOWLEDGMENTS; References; Taking into Account FX-FX for Asymptotic Variance; Efficient estimation of the dose-response function under ignorability using subclassification on the covariates.
  • IntroductionModel, identification, and estimator; Large sample results; Simulations; Extensions and final remarks; Notes; Acknowledgments; References; Average derivative estimation with missing responses; Introduction; The model and estimator; Asymptotic results; Monte carlo experiments; Acknowledgments; References; Auxiliary Notation and Results; Main Proofs; Consistent estimation and orthogonality; Introduction; Preliminaries and notation; The likelihood function: three orthogonality concepts; Inference based on the score; Inconsistency of the integrated likelihood estimator; Conclusion.
  • NotesAcknowledgment; References; Orthogonality in the single index model; On the estimation of selection models when participation is endogenous and misclassified; Introduction; The model and estimator; Sampling algorithm; Simulated data example; Summary and conclusions; Notes; Acknowledgments; References; summary tables for additional simulations; Process for simulating non
  • normal errors; Efficient probit estimation with partially missing covariates; Introduction; Model Specification; Efficient estimators and variances; Testing assumptions and possible modifications; Other models.
  • SimulationsEmpirical application to portfolio allocation; Conclusion; Notes; Acknowledgment; References; Efficient estimators of Bx and Bw; Variances of Bx and Bw; The case of observed Y; Nonlinear difference-in-difference treatment effect estimation: A distributional analysis; Introduction; Methodology; Monte Carlo simulation; Empirical application; Conclusion; Notes; Acknowledgment; References; Bayesian analysis of multivariate sample selection models using gaussian copulas; Introduction; Copulas; Model; Estimation; Applications; Concluding remarks; Acknowledgments; References.