Missing Data Methods : Cross-Sectional Methods and Applications.
Volume 27 of Advances in Econometrics, entitled Missing Data Methods, contains 16 chapters authored by specialists in the field, covering topics such as: Missing-Data Imputation in Nonstationary Panel Data Models; Markov Switching Models in Empirical Finance; Bayesian Analysis of Multivariate Sample...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Bradford :
Emerald Group Publishing Limited,
2011.
|
Colección: | Advances in Econometrics, 27.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Missing Data Methods: Cross-sectional Methods and Applications; Copyright Page; Contents; List of contributors; Introduction; Cross-sectional methods and applications; Acknowledgments; References; The elephant in the corner: a cautionary tale about measurement error in treatment effects models; Introduction; Consequences of measurement error; Evidence of measurement error; Causal inference under conditional independence; Estimation in the Absence of Measurement Error; Monte carlo study; Results; Conclusion; Notes; Acknowledgments; References.
- Recent developments in semiparametric and nonparametric estimation of panel data models with incomplete information: A selected reviewIntroduction; Models with incomplete data; Measurement Error; Concluding remarks; Notes; References; Likelihood-based estimators for endogenous or truncated samples in standard stratified sampling; Introduction; Four types of estimators; A simulation study; Conclusions; ACKNOWLEDGMENTS; References; Taking into Account FX-FX for Asymptotic Variance; Efficient estimation of the dose-response function under ignorability using subclassification on the covariates.
- IntroductionModel, identification, and estimator; Large sample results; Simulations; Extensions and final remarks; Notes; Acknowledgments; References; Average derivative estimation with missing responses; Introduction; The model and estimator; Asymptotic results; Monte carlo experiments; Acknowledgments; References; Auxiliary Notation and Results; Main Proofs; Consistent estimation and orthogonality; Introduction; Preliminaries and notation; The likelihood function: three orthogonality concepts; Inference based on the score; Inconsistency of the integrated likelihood estimator; Conclusion.
- NotesAcknowledgment; References; Orthogonality in the single index model; On the estimation of selection models when participation is endogenous and misclassified; Introduction; The model and estimator; Sampling algorithm; Simulated data example; Summary and conclusions; Notes; Acknowledgments; References; summary tables for additional simulations; Process for simulating non
- normal errors; Efficient probit estimation with partially missing covariates; Introduction; Model Specification; Efficient estimators and variances; Testing assumptions and possible modifications; Other models.
- SimulationsEmpirical application to portfolio allocation; Conclusion; Notes; Acknowledgment; References; Efficient estimators of Bx and Bw; Variances of Bx and Bw; The case of observed Y; Nonlinear difference-in-difference treatment effect estimation: A distributional analysis; Introduction; Methodology; Monte Carlo simulation; Empirical application; Conclusion; Notes; Acknowledgment; References; Bayesian analysis of multivariate sample selection models using gaussian copulas; Introduction; Copulas; Model; Estimation; Applications; Concluding remarks; Acknowledgments; References.