|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn769342424 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
111226s2011 xx ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d DG1
|d YDXCP
|d N$T
|d ITD
|d COO
|d OCLCQ
|d CHVBK
|d OCLCQ
|d OCLCO
|d RECBK
|d DEBSZ
|d CGU
|d IAI
|d VT2
|d IDEBK
|d OCLCQ
|d DG1
|d CPO
|d OCLCO
|d LIP
|d ZCU
|d OCLCQ
|d MERUC
|d DEBBG
|d OCLCQ
|d UUM
|d ICG
|d VTS
|d AU@
|d OCLCQ
|d TKN
|d U3W
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 773301077
|a 778620549
|a 779230606
|a 816882062
|a 927499407
|a 984520082
|
020 |
|
|
|a 9781118166123
|q (electronic bk.)
|
020 |
|
|
|a 1118166124
|q (electronic bk.)
|
020 |
|
|
|a 9781118166093
|q (electronic bk.)
|
020 |
|
|
|a 1118166094
|q (electronic bk.)
|
020 |
|
|
|a 1283401258
|
020 |
|
|
|a 9781283401258
|
020 |
|
|
|z 1118166094
|
020 |
|
|
|z 9780470582305
|
020 |
|
|
|z 0470582308
|
024 |
8 |
|
|a 9786613401250
|
029 |
1 |
|
|a AU@
|b 000055784013
|
029 |
1 |
|
|a CHDSB
|b 005946898
|
029 |
1 |
|
|a CHNEW
|b 000938819
|
029 |
1 |
|
|a CHVBK
|b 480191034
|
029 |
1 |
|
|a DEBBG
|b BV041828909
|
029 |
1 |
|
|a DEBBG
|b BV044159818
|
029 |
1 |
|
|a DEBSZ
|b 431068917
|
029 |
1 |
|
|a DEBSZ
|b 485011476
|
029 |
1 |
|
|a NZ1
|b 15916480
|
035 |
|
|
|a (OCoLC)769342424
|z (OCoLC)773301077
|z (OCoLC)778620549
|z (OCoLC)779230606
|z (OCoLC)816882062
|z (OCoLC)927499407
|z (OCoLC)984520082
|
037 |
|
|
|a 10.1002/9781118166123
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
050 |
|
4 |
|a QD504 .R38 2012
|
072 |
|
7 |
|a SCI
|x 013050
|2 bisacsh
|
072 |
|
7 |
|a TDCB
|2 bicssc
|
082 |
0 |
4 |
|a 541/.36
|
084 |
|
|
|a SCI007000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a DaCosta, Herbert.
|
245 |
1 |
0 |
|a Rate Constant Calculation for Thermal Reactions :
|b Methods and Applications.
|
260 |
|
|
|a Hoboken :
|b John Wiley & Sons,
|c 2011.
|
300 |
|
|
|a 1 online resource (360 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Providing an overview of the latest computational approaches to estimate rate constants for thermal reactions, this book addresses the theories behind various first-principle and approximation methods that have emerged in the last twenty years with validation examples. It presents in-depth applications of those theories to a wide range of basic and applied research areas.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
2 |
|
|a Part 1, Methods: Overview of thermochemistry and its application to reaction kinetics / Elke Goos and Alexander Burcat -- Calculation of kinetic data using computational methods / Fernando Cossío -- Quantum instanton evaluation of the kinetic isotope effects and of the temperature dependence of the rate constant / Jiri Vanicek -- Activation energies in computational chemistry : a case study / Michael Busch, Elisabet Ahlberg, and Itai Panas -- No barrier theory : a new approach to calculating rate constants in solution / Peter Guthrie -- Part 2, Minireviews and applications: Quantum chemical and rate constant calculations of thermal isomerizations, decompositions, and ring expansions of organic ring compounds / Faina Dubnikova and Assa Lifshitz -- Challenges in the computation of rate constants for lignin model compounds / Ariana Beste and A.C. Buchanan, III -- Quantum chemistry study on the pyrolysis mechanisms of coal-related model compounds / Baojun Wang, Riguang Zhang and Lixia Ling -- Ab initio kinetic modeling of free-radical polymerization / Michelle L. Coote -- Intermolecular electron transfer reactivity for organic compounds studied using Marcus Cross-rate theory / Stephen F. Nelson and Jack R. Pladziewicz.
|
505 |
8 |
|
|a 8.3.1. The Pyrolysis Mechanisms of Oxygen-Containing Model Compounds -- 8.3.1.1. Phenol and Furan -- 8.3.1.2. Benzoic Acid and Benzaldehyde -- 8.3.1.3. Anisole -- 8.3.2. The Pyrolysis Mechanisms of Nitrogen-Containing Model Compounds -- 8.3.2.1. Pyrrole and Indole -- 8.3.2.2. Pyridine -- 8.3.2.3. 2-Picoline -- 8.3.2.4. Quinoline and Isoquinoline -- 8.3.3. The Pyrolysis Mechanisms of Sulfur-Containing Model Compounds -- 8.3.3.1. Thiophene -- 8.3.3.2. Benzenethiol -- 8.4. Conclusion -- References -- 9. Ab Initio Kinetic Modeling of Free-Radical Polymerization -- 9.1. Introduction -- 9.1.1. Free-Radical Polymerization Kinetics -- 9.1.2. Scope of this Chapter -- 9.2. Ab Initio Kinetic Modeling -- 9.2.1. Conventional Kinetic Modeling -- 9.2.2. Ab Initio Kinetic Modeling -- 9.3. Quantum Chemical Methodology -- 9.3.1. Model Systems -- 9.3.2. Theoretical Procedures -- 9.4. Case Study: RAFT Polymerization -- 9.5. Outlook -- References -- 10. Intermolecular Electron Transfer Reactivity for Organic Compounds Studied Using Marcus Cross-Rate Theory -- 10.1. Introduction -- 10.2. Determination of DG! i (fit) Values -- 10.3. Why is the Success of Cross-Rate Theory Surprising -- 10.4. Major Factors Determining Intrinsic Reactivities of Hydrazine Couples -- 10.5. Nonhydrazine Couples -- 10.6. Comparison of?G! i (fit) with?G! i (self) Values -- 10.7. Estimation of Hab from Experimental Exchange Rate Constants and DFT-Computed? -- 10.8. Comparison with Gas-Phase Reactions -- 10.9. Conclusions -- References -- INDEX.
|
505 |
0 |
|
|a Rate Constant Calculation for Thermal Reactions: Methods and Applications -- CONTENTS -- PREFACE -- CONTRIBUTORS -- PART I: METHODS -- 1. Overview of Thermochemistry and Its Application to Reaction Kinetics -- 1.1. History of Thermochemistry -- 1.2. Thermochemical Properties -- 1.3. Consequences of Thermodynamic Laws to Chemical Kinetics -- 1.4. How to Get Thermochemical Values -- 1.4.1. Measurement of Thermochemical Values -- 1.4.2. Calculation of Thermochemical Values -- 1.4.2.1. Quantum Chemical Calculations of Molecular Properties -- 1.4.2.2. Calculation of Thermodynamic Functions from Molecular Properties -- 1.5. Accuracy of Thermochemical Values -- 1.5.1. Standard Enthalpies of Formation -- 1.5.2. Active Thermochemical Tables -- 1.6. Representation of Thermochemical Data for Use in Engineering Applications -- 1.6.1. Representation in Tables -- 1.6.2. Representation with Group Additivity Values -- 1.6.3. Representation as Polynomials -- 1.6.3.1. How to Change?f H298K Without Recalculating NASA Polynomials -- 1.7. Thermochemical Databases -- 1.8. Conclusion -- References -- 2. Calculation of Kinetic Data Using Computational Methods -- 2.1. Introduction -- 2.2. Stationary Points and Potential Energy Hypersurfaces -- 2.3. Calculation of Reaction and Activation Energies: Levels of Theory and Solvent Effects -- 2.3.1. Hartree-Fock and Post-Hartree-Fock Methods -- 2.3.2. Methods Based on Density Functional Theory -- 2.3.3. Computational Treatment of Solvent Effects -- 2.4. Estimate of Relative Free Energies: Standard States -- 2.5. Theoretical Approximate Kinetic Constants and Treatment of Data -- 2.6. Selected Examples -- 2.6.1. Relative Reactivities of Phosphines in Aza-Wittig Reactions -- 2.6.2. Origins of the Stereocontrol in the Staudinger Reaction Between Ketenes and Imines to Form?-Lactams.
|
505 |
8 |
|
|a 7. Challenges in the Computation of Rate Constants for Lignin Model Compounds -- 7.1. Lignin: A Renewable Source of Fuels and Chemicals -- 7.1.1. Origin and Chemical Structure -- 7.1.2. Processing Techniques and Challenges -- 7.2. Mechanistic Study of Lignin Model Compounds -- 7.2.1. Experimental Work -- 7.2.2. Computational Work -- 7.3. Computational Investigation of the Pyrolysis of?-O-4 Model Compounds -- 7.3.1. Methodology -- 7.3.1.1. Overview -- 7.3.1.2. Transition State Theory -- 7.3.1.3. Anharmonic Corrections -- 7.3.2. Analytical Kinetic Models -- 7.3.2.1. Parallel Reactions -- 7.3.2.2. Series of First-Order Reactions -- 7.3.2.3. Product Selectivity for the Pyrolysis of PPE -- 7.3.3. Numerical Integration -- 7.4. Case Studies: Substituent Effects on Reactions of Phenethyl Phenyl Ethers -- 7.4.1. Computational Details -- 7.4.2. Initiation: Homolytic Cleavage -- 7.4.3. Hydrogen Abstraction Reactions and?/?-Selectivities -- 7.4.3.1. PPE and PPE Derivatives with Substituents on Phenethyl Group -- 7.4.3.2. PPE and PPE Derivatives with Substituents on Phenyl Group Adjacent to Ether Oxygen -- 7.4.4. Phenyl Rearrangement -- 7.5. Conclusions and Outlook -- Acknowledgments -- Appendix: Summary of Kinetic Parameters -- References -- 8. Quantum Chemistry Study on the Pyrolysis Mechanisms of Coal-Related Model Compounds -- 8.1. Introduction to the Application of Quantum Chemistry Calculation to Investigation on Models of Coal Structure -- 8.2. The Model for Coal Structure and Calculation Methods -- 8.2.1. The Proposal of Local Microstructure Model of Coal -- 8.2.2. Coal-Related Model Compounds Describing the Properties of Coal Pyrolysis -- 8.2.3. The Pyrolysis of Model Compounds Reflecting the Pyrolysis Phenomenon of Coal -- 8.2.4. The Calculation Methods -- 8.3. The Pyrolysis Mechanisms of Coal-Related Model Compounds.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Chemical kinetics
|x Effect of temperature on
|x Mathematics.
|
650 |
|
6 |
|a Cinétique chimique
|x Effets de la température sur
|x Mathématiques.
|
650 |
|
7 |
|a SCIENCE
|x Chemistry
|x Physical & Theoretical.
|2 bisacsh
|
650 |
|
7 |
|a Thermochemie
|2 gnd
|
650 |
|
7 |
|a Kinetik
|2 gnd
|
650 |
|
7 |
|a Reaktionsgeschwindigkeit
|2 gnd
|
650 |
|
7 |
|a Mathematische Methode
|2 gnd
|
700 |
1 |
|
|a Fan, Maohong.
|
758 |
|
|
|i has work:
|a Rate Constant Calculation for Thermal Reactions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFPxKKgmJmchvB4RGdMtrq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a DaCosta, Herbert.
|t Rate Constant Calculation for Thermal Reactions : Methods and Applications.
|d Hoboken : John Wiley & Sons, ©2011
|z 9780470582305
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=818508
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 7. Challenges in the Computation of Rate Constants for Lignin Model Compounds -- 7.1. Lignin: A Renewable Source of Fuels and Chemicals -- 7.1.1. Origin and Chemical Structure -- 7.1.2. Processing Techniques and Challenges -- 7.2. Mechanistic Study of Lignin Model Compounds -- 7.2.1. Experimental Work -- 7.2.2. Computational Work -- 7.3. Computational Investigation of the Pyrolysis of β-O-4 Model Compounds -- 7.3.1. Methodology -- 7.3.1.1. Overview -- 7.3.1.2. Transition State Theory -- 7.3.1.3. Anharmonic Corrections -- 7.3.2. Analytical Kinetic Models -- 7.3.2.1. Parallel Reactions -- 7.3.2.2. Series of First-Order Reactions -- 7.3.2.3. Product Selectivity for the Pyrolysis of PPE -- 7.3.3. Numerical Integration -- 7.4. Case Studies: Substituent Effects on Reactions of Phenethyl Phenyl Ethers -- 7.4.1. Computational Details -- 7.4.2. Initiation: Homolytic Cleavage -- 7.4.3. Hydrogen Abstraction Reactions and α/β-Selectivities -- 7.4.3.1. PPE and PPE Derivatives with Substituents on Phenethyl Group -- 7.4.3.2. PPE and PPE Derivatives with Substituents on Phenyl Group Adjacent to Ether Oxygen -- 7.4.4. Phenyl Rearrangement -- 7.5. Conclusions and Outlook -- Acknowledgments -- Appendix: Summary of Kinetic Parameters -- References -- 8. Quantum Chemistry Study on the Pyrolysis Mechanisms of Coal-Related Model Compounds -- 8.1. Introduction to the Application of Quantum Chemistry Calculation to Investigation on Models of Coal Structure -- 8.2. The Model for Coal Structure and Calculation Methods -- 8.2.1. The Proposal of Local Microstructure Model of Coal -- 8.2.2. Coal-Related Model Compounds Describing the Properties of Coal Pyrolysis -- 8.2.3. The Pyrolysis of Model Compounds Reflecting the Pyrolysis Phenomenon of Coal -- 8.2.4. The Calculation Methods -- 8.3. The Pyrolysis Mechanisms of Coal-Related Model Compounds.
|
880 |
8 |
|
|6 505-00/(S
|a 8.3.1. The Pyrolysis Mechanisms of Oxygen-Containing Model Compounds -- 8.3.1.1. Phenol and Furan -- 8.3.1.2. Benzoic Acid and Benzaldehyde -- 8.3.1.3. Anisole -- 8.3.2. The Pyrolysis Mechanisms of Nitrogen-Containing Model Compounds -- 8.3.2.1. Pyrrole and Indole -- 8.3.2.2. Pyridine -- 8.3.2.3. 2-Picoline -- 8.3.2.4. Quinoline and Isoquinoline -- 8.3.3. The Pyrolysis Mechanisms of Sulfur-Containing Model Compounds -- 8.3.3.1. Thiophene -- 8.3.3.2. Benzenethiol -- 8.4. Conclusion -- References -- 9. Ab Initio Kinetic Modeling of Free-Radical Polymerization -- 9.1. Introduction -- 9.1.1. Free-Radical Polymerization Kinetics -- 9.1.2. Scope of this Chapter -- 9.2. Ab Initio Kinetic Modeling -- 9.2.1. Conventional Kinetic Modeling -- 9.2.2. Ab Initio Kinetic Modeling -- 9.3. Quantum Chemical Methodology -- 9.3.1. Model Systems -- 9.3.2. Theoretical Procedures -- 9.4. Case Study: RAFT Polymerization -- 9.5. Outlook -- References -- 10. Intermolecular Electron Transfer Reactivity for Organic Compounds Studied Using Marcus Cross-Rate Theory -- 10.1. Introduction -- 10.2. Determination of DG‡ii (fit) Values -- 10.3. Why is the Success of Cross-Rate Theory Surprising-- 10.4. Major Factors Determining Intrinsic Reactivities of Hydrazine Couples -- 10.5. Nonhydrazine Couples -- 10.6. Comparison of ΔG‡ii (fit) with ΔG‡ii (self) Values -- 10.7. Estimation of Hab from Experimental Exchange Rate Constants and DFT-Computed λ -- 10.8. Comparison with Gas-Phase Reactions -- 10.9. Conclusions -- References -- INDEX.
|
880 |
0 |
|
|6 505-00/(S
|a Rate Constant Calculation for Thermal Reactions: Methods and Applications -- CONTENTS -- PREFACE -- CONTRIBUTORS -- PART I: METHODS -- 1. Overview of Thermochemistry and Its Application to Reaction Kinetics -- 1.1. History of Thermochemistry -- 1.2. Thermochemical Properties -- 1.3. Consequences of Thermodynamic Laws to Chemical Kinetics -- 1.4. How to Get Thermochemical Values-- 1.4.1. Measurement of Thermochemical Values -- 1.4.2. Calculation of Thermochemical Values -- 1.4.2.1. Quantum Chemical Calculations of Molecular Properties -- 1.4.2.2. Calculation of Thermodynamic Functions from Molecular Properties -- 1.5. Accuracy of Thermochemical Values -- 1.5.1. Standard Enthalpies of Formation -- 1.5.2. Active Thermochemical Tables -- 1.6. Representation of Thermochemical Data for Use in Engineering Applications -- 1.6.1. Representation in Tables -- 1.6.2. Representation with Group Additivity Values -- 1.6.3. Representation as Polynomials -- 1.6.3.1. How to Change Δf H298K Without Recalculating NASA Polynomials -- 1.7. Thermochemical Databases -- 1.8. Conclusion -- References -- 2. Calculation of Kinetic Data Using Computational Methods -- 2.1. Introduction -- 2.2. Stationary Points and Potential Energy Hypersurfaces -- 2.3. Calculation of Reaction and Activation Energies: Levels of Theory and Solvent Effects -- 2.3.1. Hartree-Fock and Post-Hartree-Fock Methods -- 2.3.2. Methods Based on Density Functional Theory -- 2.3.3. Computational Treatment of Solvent Effects -- 2.4. Estimate of Relative Free Energies: Standard States -- 2.5. Theoretical Approximate Kinetic Constants and Treatment of Data -- 2.6. Selected Examples -- 2.6.1. Relative Reactivities of Phosphines in Aza-Wittig Reactions -- 2.6.2. Origins of the Stereocontrol in the Staudinger Reaction Between Ketenes and Imines to Form β-Lactams.
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL818508
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 340125
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00066437
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7010691
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7305819
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12670744
|
994 |
|
|
|a 92
|b IZTAP
|