Cargando…

ESD : design and synthesis /

"The book focuses on both fundamentals of ESD design to construct and integrate a semiconductor chip. It enables ESD engineers to build better products by exploring six key areas- 1) ESD design synthesis 2) I/O design and integration 3) semiconductor chip architecture 4) floor planning 5) power...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Voldman, Steven H.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, U.K. : Wiley, 2011.
Colección:ESD series.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. ESD Design Synthesis
  • 1.1. ESD Design Synthesis and Architecture Flow
  • 1.1.1. Top-Down ESD Design
  • 1.1.2. Bottom-Up ESD Design
  • 1.1.3. Top-Down ESD Design
  • Memory Semiconductor Chips
  • 1.1.4. Top-Down ESD Design
  • ASIC Design System
  • 1.2. ESD Design
  • The Signal Path and the Alternate Current Path
  • 1.3. ESD Electrical Circuit and Schematic Architecture Concepts
  • 1.3.1. The Ideal ESD Network and the Current
  • Voltage DC Design Window
  • 1.3.2. The ESD Design Window
  • 1.3.3. The Ideal ESD Networks in the Frequency Domain Design Window
  • 1.4. Mapping Semiconductor Chips and ESD Designs
  • 1.4.1. Mapping Across Semiconductor Fabricators
  • 1.4.2. ESD Design Mapping Across Technology Generations
  • 1.4.3. Mapping from Bipolar Technology to CMOS Technology
  • 1.4.4. Mapping from Digital CMOS Technology to Mixed Signal Analog
  • Digital CMOS Technology
  • 1.4.5. Mapping from Bulk CMOS Technology to Silicon on Insulator (SOI)
  • 1.4.6. ESD Design
  • Mapping CMOS to RF CMOS Technology.
  • 1.5. ESD Chip Architecture and ESD Test Standards
  • 1.5.1. ESD Chip Architecture and ESD Testing
  • 1.6. ESD Testing
  • 1.6.1. ESD Qualification Testing
  • 1.6.2. ESD Test Models
  • 1.6.3. ESD Characterization Testing
  • 1.6.4. TLP Testing
  • 1.7. ESD Chip Architecture and ESD Alternative Current Paths
  • 1.7.1. ESD Circuits, I/O, and Cores
  • 1.7.2. ESD Signal Pin Circuits
  • 1.7.3. ESD Power Clamp Networks
  • 1.7.4. ESD Rail-to-Rail Circuits
  • 1.7.5. ESD Design and Noise
  • 1.7.6. Internal Signal Path ESD Networks
  • 1.7.7. Cross-Domain ESD Networks
  • 1.8. ESD Networks, Sequencing, and Chip Architecture
  • 1.9. ESD Design Synthesis
  • Latchup-Free ESD Networks
  • 1.10. ESD Design Concepts
  • Buffering
  • Inter-Device
  • 1.11. ESD Design Concepts
  • Ballasting
  • Inter-Device
  • 1.12. ESD Design Concepts
  • Ballasting
  • Intra-Device
  • 1.13. ESD Design Concepts
  • Distributed Load Techniques
  • 1.14. ESD Design Concepts
  • Dummy Circuits
  • 1.15. ESD Design Concepts
  • Power Supply De-Coupling
  • 1.16. ESD Design Concepts
  • Feedback Loop De-Coupling
  • 1.17. ESD Layout and Floorplan-Related Concepts.
  • 1.17.1. Design Symmetry
  • 1.17.2. Design Segmentation
  • 1.17.3. ESD Design Concepts
  • Utilization of Empty Space
  • 1.17.4. ESD Design Synthesis
  • Across Chip Line Width Variation (ACLV)
  • 1.17.5. ESD Design Concepts
  • Dummy Shapes
  • 1.17.6. ESD Design Concepts
  • Dummy Masks
  • 1.17.7. ESD Design Concepts
  • Adjacency
  • 1.18. ESD Design Concepts
  • Analog Circuit Techniques
  • 1.19. ESD Design Concepts
  • Wire Bonds
  • 1.20. Design Rules
  • 1.20.1. ESD Design Rule Checking (DRC)
  • 1.20.2. ESD Layout vs. Schematic (LVS)
  • 1.20.3. Electrical Resistance Checking (ERC)
  • 1.21. Summary and Closing Comments
  • Problems
  • References
  • 2. ESD Architecture and Floorplanning
  • 2.1. ESD Design Floorplan
  • 2.2. Peripheral I/O Design
  • 2.2.1. Pad-Limited Peripheral I/O Design Architecture
  • 2.2.2. Pad-Limited Peripheral I/O Design Architecture
  • Staggered I/O
  • 2.2.3. Core-Limited Peripheral I/O Design Architecture
  • 2.3. Lumped ESD Power Clamp in Peripheral I/O Design Architecture
  • 2.3.1. Lumped ESD Power Clamp in Peripheral I/O Design Architecture in the Semiconductor Chip Corners.
  • 2.3.2. Lumped ESD Power Clamp in Peripheral I/O Design Architecture
  • Power Pads
  • 2.4. Lumped ESD Power Clamp in Peripheral I/O Design Architecture
  • Master/Slave ESD Power Clamp System
  • 2.5. Array I/O
  • 2.5.1. Array I/O
  • Off-Chip Driver Banks
  • 2.5.2. Array I/O Nibble Architecture
  • 2.5.3. Array I/O Pair Architecture
  • 2.5.4. Array I/O
  • Fully Distributed
  • 2.6. ESD Architecture
  • Dummy Bus Architectures
  • 2.6.1. ESD Architecture
  • Dummy VDD Bus
  • 2.6.2. ESD Architecture
  • Dummy Ground (VSS) Bus
  • 2.7. Native Voltage Power Supply Architecture
  • 2.7.1. Single Power Supply Architecture
  • 2.8. Mixed-Voltage Architecture
  • 2.8.1. Mixed-Voltage Architecture
  • Single Power Supply
  • 2.8.2. Mixed-Voltage Architecture
  • Dual Power Supply
  • 2.9. Mixed-Signal Architecture
  • 2.9.1. Mixed-Signal Architecture
  • Bipolar
  • 2.9.2. Mixed-Signal Architecture
  • CMOS
  • 2.10. Mixed-System Architecture
  • Digital and Analog CMOS
  • 2.10.1. Digital and Analog CMOS Architecture
  • 2.10.2. Digital and Analog Floorplan
  • Placement of Analog Circuits
  • 2.11. Mixed-Signal Architecture
  • Digital, Analog, and RF Architecture.
  • 2.12. Summary and Closing Comments
  • Problems
  • References
  • 3. ESD Power Grid Design
  • 3.1. ESD Power Grid
  • 3.1.1. ESD Power Grid
  • Key ESD Design Parameters
  • 3.1.2. ESD and the Alternative Current Path
  • The Role of ESD Power Grid Resistance
  • 3.2. Semiconductor Chip Impedance
  • 3.3. Interconnect Failure and Dynamic On-Resistance
  • 3.3.1. Interconnect Dynamic On-Resistance
  • 3.3.2. Ti/Al/Ti Interconnect Failure
  • 3.3.3. Copper Interconnect Failure
  • 3.3.4. Melting Temperature of Interconnect Materials
  • 3.4. Interconnect Wire and Via Guidelines
  • 3.4.1. Interconnect Wire and Via Guidelines for HBM ESD Events
  • 3.4.2. Interconnect Wire and Via Guidelines for MM ESD Events
  • 3.4.3. Interconnect Wire and Via Guidelines for CDM ESD Events
  • 3.4.4. Interconnect Wire and Via Guidelines for HMM and IEC 61000-4-2 ESD Events
  • 3.4.5. Wire and Via ESD Metrics
  • 3.5. ESD Power Grid Resistance
  • 3.5.1. Power Grid Design
  • ESD Input to Power Grid Resistance
  • 3.5.2. ESD Input to Power Grid Connections
  • Across ESD Bus Resistance
  • 3.5.3. Power Grid Design
  • ESD Power Clamp to Power Grid Resistance Evaluation.
  • 3.5.4. Power Grid Design
  • Resistance Evaluation
  • 3.5.5. Power Grid Design Distribution Representation
  • 3.6. Power Grid Layout Design
  • 3.6.1. Power Grid Design
  • Slotting of Power Grid
  • 3.6.2. Power Grid Design
  • Segmentation of Power Grids
  • 3.6.3. Power Grid Design
  • Chip Corners
  • 3.6.4. Power Grid Design
  • Stacking of Metal Levels
  • 3.6.5. Power Grid Design
  • Wiring Bays and Weaved Power Bus Designs
  • 3.7. ESD Specification Power Grid Considerations
  • 3.7.1. CDM Specification Power Grid and Interconnect Design Considerations
  • 3.7.2. HMM and IEC Specification Power Grid and Interconnect Design Considerations
  • 3.8. Power Grid Design Synthesis
  • ESD Design Rule Checking Methods
  • 3.8.1. Power Grid Design Synthesis
  • ESD DRC Methods Using an ESD Virtual Design Level
  • 3.8.2. Power Grid Design Synthesis
  • ESD DRC Methods Using an ESD Interconnect Parameterized Cell
  • 3.9. Summary and Closing Comments
  • Problems
  • References
  • 4. ESD Power Clamps
  • 4.1. ESD Power Clamps
  • 4.1.1. Classification of ESD Power Clamps
  • 4.1.2. Design Synthesis of ESD Power Clamp
  • Key Design Parameters.
  • 4.2. Design Synthesis of ESD Power Clamps
  • 4.2.1. Transient Response Frequency Trigger Element and the ESD Frequency Window
  • 4.2.2. The ESD Power Clamp Frequency Design Window
  • 4.2.3. Design Synthesis of ESD Power Clamp
  • Voltage Triggered ESD Trigger Elements
  • 4.3. Design Synthesis of ESD Power Clamp
  • The ESD Power Clamp Shunting Element
  • 4.3.1. ESD Power Clamp Trigger Condition vs. Shunt Failure
  • 4.3.2. ESD Clamp Element
  • Width Scaling
  • 4.3.3. ESD Clamp Element
  • On-Resistance
  • 4.3.4. ESD Clamp Element
  • Safe Operating Area
  • 4.4. ESD Power Clamp Issues
  • 4.4.1. ESD Power Clamp Issues
  • Power-Up and Power-Down
  • 4.4.2. ESD Power Clamp Issues
  • False Triggering
  • 4.4.3. ESD Power Clamp Issues
  • Pre-Charging
  • 4.4.4. ESD Power Clamp Issues
  • Post-Charging
  • 4.5. ESD Power Clamp Design
  • 4.5.1. Native Power Supply RC-Triggered MOSFET ESD Power Clamp
  • 4.5.2. Non-Native Power Supply RC-Triggered MOSFET ESD Power Clamp
  • 4.5.3. ESD Power Clamp Networks with Improved Inverter Stage Feedback
  • 4.5.4. ESD Power Clamp Design Synthesis
  • Forward Bias Triggered ESD Power Clamps.
  • 4.5.5. ESD Power Clamp Design Synthesis
  • IEC 61000-4-2 Responsive ESD Power Clamps
  • 4.5.6. ESD Power Clamp Design Synthesis
  • Pre-Charging and Post-Charging Insensitive ESD Power Clamps
  • 4.6. ESD Power Clamp Design Synthesis
  • Bipolar ESD Power Clamps
  • 4.6.1. Bipolar ESD Power Clamps with Zener Breakdown Trigger Element
  • 4.6.2. Bipolar ESD Power Clamps with Bipolar Transistor BVceo Breakdown Trigger Element
  • 4.6.3. Bipolar ESD Power Clamps with BVceo Bipolar Transistor Trigger and Variable Trigger Diode String Network
  • 4.6.4. Bipolar ESD Power Clamps with Frequency Trigger Elements
  • 4.7. Master/Slave ESD Power Clamp Systems
  • 4.8. Summary and Closing Comments
  • Problems
  • References
  • 5. ESD Signal Pin Networks Design and Synthesis
  • 5.1. ESD Signal Pin Structures
  • 5.1.1. Classification of ESD Signal Pin Networks
  • 5.1.2. ESD Design Synthesis of ESD Signal Devices
  • Key Design Parameters
  • 5.2. ESD Input Structures
  • ESD and Bond Pads Layout
  • 5.2.1. ESD and Bond Pad Layout and Synthesis
  • 5.2.2. ESD Structures Between Bond Pads.
  • 5.2.3. Split I/O and Bond Pad
  • 5.2.4. Split ESD Adjacent to Bond Pad
  • 5.2.5. ESD Structures Partially Under Bond Pads
  • 5.2.6. ESD Structures Under and Between the Bond Pads
  • 5.2.7. ESD Circuits and RF Bond Pad Integration
  • 5.2.8. RF ESD Signal Pad Structures Under Bond Pads
  • 5.3. ESD Design Synthesis and Layout of MOSFETs
  • 5.3.1. MOSFET Key Design Parameters
  • 5.3.2. Single MOSFET with Silicide Block Masks
  • 5.3.3. Series Cascode MOSFET
  • 5.3.4. Triple-well MOSFETs.
  • 5.4. ESD Design Synthesis and Layout of Diodes
  • 5.4.1. ESD Diode Key Design Parameters
  • 5.4.2. ESD Design Synthesis of Dual-Diode Networks
  • 5.4.3. ESD Design Synthesis of Diode String Networks
  • 5.4.4. ESD Design Synthesis of Back-to-Back Diode String
  • 5.4.5. ESD Design Synthesis for Differential Pair
  • 5.5. ESD Design Synthesis of SCRs
  • 5.5.1. ESD Design Synthesis of Uni-directional SCRs
  • 5.5.2. ESD Design Synthesis of Bi-directional SCRs
  • 5.5.3. ESD Design Synthesis of SCRs
  • External Trigger Element
  • 5.6. ESD Design Synthesis and Layout of Resistors
  • 5.6.1. Polysilicon Resistor Design Layout
  • 5.6.2. Diffusion Resistor Design Layout
  • 5.6.3. P-diffusion Resistor Design Layout
  • 5.6.4. N-diffusion Resistor Design
  • 5.6.5. Buried Resistors
  • 5.6.6. N-well Resistors
  • 5.7. ESD Design Synthesis of Inductors.
  • 5.8. Summary and Closing Comments
  • Problems
  • References
  • 6. Guard Ring Design and Synthesis
  • 6.1. Guard Ring Design and Integration
  • 6.2. Guard Ring Characterization
  • 6.2.1. Guard Ring Efficiency
  • 6.2.2. Guard Ring Theory
  • A Generalized Bipolar Transistor Perspective
  • 6.2.3. Guard Ring Theory
  • A Probability of Escape Perspective
  • 6.2.4. Guard Ring
  • The Injection Ratio
  • 6.3. Semiconductor Chip Guard Ring Seal
  • 6.4. I/O to Core Guard Rings
  • 6.5. I/O to I/O Guard Rings
  • 6.6. Within I/O Guard Rings
  • 6.6.1. Within I/O Cell Guard Ring
  • 6.6.2. ESD-to-I/O OCD Guard Ring
  • 6.7. ESD Signal Pin Guard Rings
  • 6.7.1. ESD Signal Pin Guard Rings and Dual-Diode ESD Network
  • 6.8. Library Element Guard Rings
  • 6.8.1. N-channel MOSFET Guard Rings
  • 6.8.2. P-channel MOSFET Guard Rings
  • 6.8.3. RF Guard Rings
  • 6.9. Mixed-Signal Guard Rings
  • Digital to Analog
  • 6.10. Mixed-Voltage Guard Rings
  • High Voltage to Low Voltage.
  • 6.10.1. Guard Rings
  • High Voltage
  • 6.11. Passive and Active Guard Rings
  • 6.11.1. Passive Guard Rings
  • 6.11.2. Active Guard Rings
  • 6.12. Trench Guard Rings
  • 6.13. TSV Guard Rings
  • 6.14. Guard Ring DRC
  • 6.14.1. Internal Latchup and Guard Ring Design Rules
  • 6.14.2. External Latchup Guard Ring Design Rules
  • 6.15. Guard Rings and Computer Aided Design Methods
  • 6.15.1. Built-in Guard Rings
  • 6.15.2. Guard Ring Parameterized Cells
  • 6.15.3. Guard Ring p-Cell SKILL Code
  • 6.15.4. Guard Ring Resistance CAD Design Checking
  • 6.15.5. Post-Processing Methodology of Guard Ring Modification
  • 6.16. Summary and Closing Comments
  • Problems
  • References
  • 7. ESD Full-Chip Design Integration and Architecture
  • 7.1. Design Synthesis and Integration
  • 7.2. Digital Design
  • 7.3. Custom Design vs. Standard Cell Design
  • 7.4. Memory ESD Design
  • 7.4.1. DRAM Design
  • 7.4.2. SRAM Design
  • 7.4.3. Non-Volatile RAM ESD Design
  • 7.5. Microprocessor ESD Design.
  • 7.5.1. 3.3 V Microprocessor with 5.0 V to 3.3 V Interface
  • 7.5.2. 2.5 V Microprocessor with 5.0 V to 2.5 V Interface
  • 7.5.3. 1.8 V Microprocessor with 3.3 V to 1.8 V Interface
  • 7.6. Application-Specific Integrated Circuits
  • 7.6.1. ASIC ESD Design
  • 7.6.2. ASIC Design Gate Array Standard Cell I/O
  • 7.6.3. ASIC Design System with Multiple Power Rails
  • 7.6.4. ASIC Design System with Voltage Islands
  • 7.7. CMOS Image Processing Chip Design
  • 7.7.1. CMOS Image Processing Chip Design with Long/Narrow Standard Cell
  • 7.7.2. CMOS Image Processing Chip Design with Short/Wide Standard Cell
  • 7.8. Mixed-Signal Architecture
  • 7.8.1. Mixed-Signal Architecture
  • Digital and Analog
  • 7.8.2. Mixed-Signal Architecture
  • Digital, Analog, and RF
  • 7.9. Summary and Closing Comments
  • Problems
  • References.