Cargando…

An introduction to mathematical modeling : a course in mechanics /

"An important resource, this book provides a short-course in nonlinear continuum mechanics, contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics, and presents a brief introduction to statistical mechanics of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Oden, J. Tinsley (John Tinsley), 1936-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley, ©2011.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: I. Nonlinear Continuum Mechanics
  • 1. Kinematics of Deformable Bodies
  • 1.1. Motion
  • 1.2. Strain and Deformation Tensors
  • 1.3. Rates of Motion
  • 1.4. Rates of Deformation
  • 1.5. Piola Transformation
  • 1.6. Polar Decomposition Theorem
  • 1.7. Principal Directions and Invariants of Deformation and Strain
  • 1.8. Reynolds' Transport Theorem
  • 2. Mass and Momentum
  • 2.1. Local Forms of the Principle of Conservation of Mass
  • 2.2. Momentum
  • 3. Force and Stress in Deformable Bodies
  • 4. Principles of Balance of Linear and Angular Momentum
  • 4.1. Cauchy's Theorem: The Cauchy Stress Tensor
  • 4.2. Equations of Motion (Linear Momentum)
  • 4.3. Equations of Motion Referred to the Reference Configuration: The Piola
  • Kirchhoff Stress Tensors
  • 4.4. Power
  • 5. Principle of Conservation of Energy
  • 5.1. Energy and the Conservation of Energy
  • 5.2. Local Forms of the Principle of Conservation of Energy
  • 6. Thermodynamics of Continua and the Second Law
  • 7. Constitutive Equations
  • 7.1. Rules and Principles for Constitutive Equations
  • 7.2. Principle of Material Frame Indifference
  • 7.2.1. Solids
  • 7.2.2. Fluids
  • 7.3. Coleman
  • Noll Method: Consistency with the Second Law of Thermodynamics
  • 8. Examples and Applications
  • 8.1. Navier
  • Stokes Equations for Incompressible Flow
  • 8.2. Flow of Gases and Compressible Fluids: The Compressible Navier
  • Stokes Equations
  • 8.3. Heat Conduction
  • 8.4. Theory of Elasticity
  • II. Electromagnetic Field Theory and Quantum Mechanics
  • 9. Electromagnetic Waves
  • 9.1. Introduction
  • 9.2. Electric Fields
  • 9.3. Gauss's Law
  • 9.4. Electric Potential Energy
  • 9.4.1. Atom Models
  • 9.5. Magnetic Fields
  • 9.6. Some Properties of Waves
  • 9.7. Maxwell's Equations
  • 9.8. Electromagnetic Waves
  • 10. Introduction to Quantum Mechanics
  • 10.1. Introductory Comments
  • 10.2. Wave and Particle Mechanics
  • 10.3. Heisenberg's Uncertainty Principle
  • 10.4. Schrodinger's Equation
  • 10.4.1. Case of a Free Particle
  • 10.4.2. Superposition in Rn
  • 10.4.3. Hamiltonian Form
  • 10.4.4. Case of Potential Energy
  • 10.4.5. Relativistic Quantum Mechanics
  • 10.4.6. General Formulations of Schrodinger's Equation
  • 10.4.7. Time-Independent Schrodinger Equation
  • 10.5. Elementary Properties of the Wave Equation
  • 10.5.1. Review
  • 10.5.2. Momentum
  • 10.5.3. Wave Packets and Fourier Transforms
  • 10.6. Wave
  • Momentum Duality
  • 10.7. Appendix: A Brief Review of Probability Densities
  • 11. Dynamical Variables and Observables in Quantum Mechanics: The Mathematical Formalism
  • 11.1. Introductory Remarks
  • 11.2. Hilbert Spaces L2(R) (or L2(Rd)) and H1(R) (or H1(Rd))
  • 11.3. Dynamical Variables and Hermitian Operators
  • 11.4. Spectral Theory of Hermitian Operators: The Discrete Spectrum
  • 11.5. Observables and Statistical Distributions
  • 11.6. Continuous Spectrum
  • 11.7. Generalized Uncertainty Principle for Dynamical Variables
  • 11.7.1. Simultaneous Eigenfunctions
  • 12. Applications: The Harmonic Oscillator and the Hydrogen Atom
  • 12.1. Introductory Remarks
  • 12.2. Ground States and Energy Quanta: The Harmonic Oscillator
  • 12.3. Hydrogen Atom
  • 12.3.1. Schrodinger Equation in Spherical Coordinates
  • 12.3.2. Radial Equation
  • 12.3.3. Angular Equation
  • 12.3.4. Orbitals of the Hydrogen Atom
  • 12.3.5. Spectroscopic States
  • 13. Spin and Pauli's Principle
  • 13.1. Angular Momentum and Spin
  • 13.2. Extrinsic Angular Momentum
  • 13.2.1. Ladder Property: Raising and Lowering States
  • 13.3. Spin
  • 13.4. Identical Particles and Pauli's Principle
  • 13.5. Helium Atom
  • 13.6. Variational Principle
  • 14. Atomic and Molecular Structure
  • 14.1. Introduction
  • 14.2. Electronic Structure of Atomic Elements
  • 14.3. Periodic Table
  • 14.4. Atomic Bonds and Molecules
  • 14.5. Examples of Molecular Structures
  • 15. Ab Initio Methods: Approximate Methods and Density Functional Theory
  • 15.1. Introduction
  • 15.2. Born
  • Oppenheimer Approximation
  • 15.3. Hartree and the Hartree
  • Fock Methods
  • 15.3.1. Hartree Method
  • 15.3.2. Hartree
  • Fock Method
  • 15.3.3. Roothaan Equations
  • 15.4. Density Functional Theory
  • 15.4.1. Electron Density
  • 15.4.2. Hohenberg
  • Kohn Theorem
  • 15.4.3. Kohn
  • Sham Theory
  • III. Statistical Mechanics
  • 16. Basic Concepts: Ensembles, Distribution Functions, and Averages
  • 16.1. Introductory Remarks
  • 16.2. Hamiltonian Mechanics
  • 16.2.1. Hamiltonian and the Equations of Motion
  • 16.3. Phase Functions and Time Averages
  • 16.4. Ensembles, Ensemble Averages, and Ergodic Systems
  • 16.5. Statistical Mechanics of Isolated Systems
  • 16.6. Microcanonical Ensemble
  • 16.6.1. Composite Systems
  • 16.7. Canonical Ensemble
  • 16.8. Grand Canonical Ensemble
  • 16.9. Appendix: A Brief Account of Molecular Dynamics
  • 16.9.1. Newtonian's Equations of Motion
  • 16.9.2. Potential Functions
  • 16.9.3. Numerical Solution of the Dynamical System
  • 17. Statistical Mechanics Basis of Classical Thermodynamics
  • 17.1. Introductory Remarks
  • 17.2. Energy and the First Law of Thermodynamics
  • 17.3. Statistical Mechanics Interpretation of the Rate of Work in Quasi-Static Processes
  • 17.4. Statistical Mechanics Interpretation of the First Law of Thermodynamics
  • 17.4.1. Statistical Interpretation of Q
  • 17.5. Entropy and the Partition Function
  • 17.6. Conjugate Hamiltonians
  • 17.7. Gibbs Relations
  • 17.8. Monte Carlo and Metropolis Methods
  • 17.8.1. Partition Function for a Canonical Ensemble
  • 17.8.2. Metropolis Method
  • 17.9. Kinetic Theory: Boltzmann's Equation of Nonequilibrium Statistical Mechanics
  • 17.9.1. Boltzmann's Equation
  • 17.9.2. Collision Invariants
  • 17.9.3. Continuum Mechanics of Compressible Fluids and Gases: The Macroscopic Balance Laws.