Statistical pattern recognition /
"Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data com...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2011.
|
Edición: | 3rd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Statistical Pattern Recognition; Contents; Preface; Notation; 1 Introduction to Statistical Pattern Recognition; 1.1 Statistical Pattern Recognition; 1.1.1 Introduction; 1.1.2 The Basic Model; 1.2 Stages in a Pattern Recognition Problem; 1.3 Issues; 1.4 Approaches to Statistical Pattern Recognition; 1.5 Elementary Decision Theory; 1.5.1 Bayes' Decision Rule for Minimum Error; 1.5.2 Bayes' Decision Rule for Minimum Error
- Reject Option; 1.5.3 Bayes' Decision Rule for Minimum Risk; 1.5.4 Bayes' Decision Rule for Minimum Risk
- Reject Option; 1.5.5 Neyman-Pearson Decision Rule.
- 1.5.6 Minimax Criterion1.5.7 Discussion; 1.6 Discriminant Functions; 1.6.1 Introduction; 1.6.2 Linear Discriminant Functions; 1.6.3 Piecewise Linear Discriminant Functions; 1.6.4 Generalised Linear Discriminant Function; 1.6.5 Summary; 1.7 Multiple Regression; 1.8 Outline of Book; 1.9 Notes and References; Exercises; 2 Density Estimation
- Parametric; 2.1 Introduction; 2.2 Estimating the Parameters of the Distributions; 2.2.1 Estimative Approach; 2.2.2 Predictive Approach; 2.3 The Gaussian Classifier; 2.3.1 Specification; 2.3.2 Derivation of the Gaussian Classifier Plug-In Estimates.
- 2.3.3 Example Application Study2.4 Dealing with Singularities in the Gaussian Classifier; 2.4.1 Introduction; 2.4.2 Na¨ıve Bayes; 2.4.3 Projection onto a Subspace; 2.4.4 Linear Discriminant Function; 2.4.5 Regularised Discriminant Analysis; 2.4.6 Example Application Study; 2.4.7 Further Developments; 2.4.8 Summary; 2.5 Finite Mixture Models; 2.5.1 Introduction; 2.5.2 Mixture Models for Discrimination; 2.5.3 Parameter Estimation for Normal Mixture Models; 2.5.4 Normal Mixture Model Covariance Matrix Constraints; 2.5.5 How Many Components?; 2.5.6 Maximum Likelihood Estimation via EM.
- 2.5.7 Example Application Study2.5.8 Further Developments; 2.5.9 Summary; 2.6 Application Studies; 2.7 Summary and Discussion; 2.8 Recommendations; 2.9 Notes and References; Exercises; 3 Density Estimation
- Bayesian; 3.1 Introduction; 3.1.1 Basics; 3.1.2 Recursive Calculation; 3.1.3 Proportionality; 3.2 Analytic Solutions; 3.2.1 Conjugate Priors; 3.2.2 Estimating the Mean of a Normal Distribution with Known Variance; 3.2.3 Estimating the Mean and the Covariance Matrix of a Multivariate Normal Distribution; 3.2.4 Unknown Prior Class Probabilities; 3.2.5 Summary; 3.3 Bayesian Sampling Schemes.
- 3.3.1 Introduction3.3.2 Summarisation; 3.3.3 Sampling Version of the Bayesian Classifier; 3.3.4 Rejection Sampling; 3.3.5 Ratio of Uniforms; 3.3.6 Importance Sampling; 3.4 Markov Chain Monte Carlo Methods; 3.4.1 Introduction; 3.4.2 The Gibbs Sampler; 3.4.3 Metropolis-Hastings Algorithm; 3.4.4 Data Augmentation; 3.4.5 Reversible Jump Markov Chain Monte Carlo; 3.4.6 Slice Sampling; 3.4.7 MCMC Example
- Estimation of Noisy Sinusoids; 3.4.8 Summary; 3.4.9 Notes and References; 3.5 Bayesian Approaches to Discrimination; 3.5.1 Labelled Training Data; 3.5.2 Unlabelled Training Data.