Cargando…

Statistical pattern recognition /

"Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data com...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Webb, A. R. (Andrew R.)
Otros Autores: Copsey, Keith D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2011.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn763160180
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 110715s2011 njuad ob 001 0 eng d
010 |a  2011024957 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d EBLCP  |d OHS  |d DEBSZ  |d OCLCO  |d OCLCQ  |d YDXCP  |d MEAUC  |d OCLCQ  |d UBY  |d OTZ  |d UKDOC  |d NLGGC  |d OCLCF  |d RECBK  |d OCLCQ  |d S3O  |d OCLCQ  |d AZK  |d LOA  |d OCLCO  |d OCLCA  |d MOR  |d PIFAG  |d MERUC  |d OCLCO  |d OCLCQ  |d ZEM  |d OCLCA  |d U3W  |d OCLCA  |d NJR  |d OCLCQ  |d OCLCO  |d STF  |d WRM  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d OCLCA  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO  |d OCLCL  |d OCLCQ  |d EZC  |d UKCRE 
019 |a 778339396  |a 793674509  |a 865013708  |a 961618602  |a 962709920  |a 966107286  |a 988498941  |a 990394327  |a 991918615  |a 1014193841  |a 1034894491  |a 1037791650  |a 1038605391  |a 1055348819  |a 1058139817  |a 1063801298  |a 1081239709  |a 1153051289 
020 |a 9781119952961  |q (e-book) 
020 |a 1119952964  |q (e-book) 
020 |a 0470682272 
020 |a 9780470682272 
020 |a 0470682280 
020 |a 9780470682289 
020 |z 9780470682272  |q (hardback) 
020 |z 9780470682289  |q (paper) 
029 1 |a AU@  |b 000049641713 
029 1 |a AU@  |b 000053284763 
029 1 |a DEBBG  |b BV044159935 
029 1 |a DEBSZ  |b 372704573 
029 1 |a DEBSZ  |b 397183054 
029 1 |a DEBSZ  |b 425884635 
029 1 |a DEBSZ  |b 428696651 
029 1 |a DKDLA  |b 820120-katalog:000587948 
029 1 |a NZ1  |b 14796562 
035 |a (OCoLC)763160180  |z (OCoLC)778339396  |z (OCoLC)793674509  |z (OCoLC)865013708  |z (OCoLC)961618602  |z (OCoLC)962709920  |z (OCoLC)966107286  |z (OCoLC)988498941  |z (OCoLC)990394327  |z (OCoLC)991918615  |z (OCoLC)1014193841  |z (OCoLC)1034894491  |z (OCoLC)1037791650  |z (OCoLC)1038605391  |z (OCoLC)1055348819  |z (OCoLC)1058139817  |z (OCoLC)1063801298  |z (OCoLC)1081239709  |z (OCoLC)1153051289 
050 4 |a Q327  |b .W43 2011eb 
060 4 |a Q327 
082 0 4 |a 006.4  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Webb, A. R.  |q (Andrew R.)  |1 https://id.oclc.org/worldcat/entity/E39PCjHPyRppBHXJhQMHm4kfYP 
245 1 0 |a Statistical pattern recognition /  |c Andrew R. Webb, Keith D. Copsey. 
250 |a 3rd ed. 
260 |a Hoboken :  |b Wiley,  |c 2011. 
300 |a 1 online resource (xxiv, 642 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "Statistical Pattern Recognition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book describes techniques for analysing data comprising measurements made on individuals or objects. The techniques are used to make a prediction such as disease of a patient, the type of object illuminated by a radar, economic forecast. Emphasis is placed on techniques for classification, a term used for predicting the class or group an object belongs to (based on a set of exemplars) and for methods that seek to discover natural groupings in a data set. Each section concludes with a description of the wide range of practical applications that have been addressed and the further developments of theoretical techniques and includes a variety of exercises, from 'open-book' questions to more lengthy projects. New material is presented, including the analysis of complex networks and basic techniques for analysing the properties of datasets and also introduces readers to the use of variational methods for Bayesian density estimation and looks at new applications in biometrics and security"--  |c Provided by publisher. 
588 0 |a Print version record. 
505 0 |a Statistical Pattern Recognition; Contents; Preface; Notation; 1 Introduction to Statistical Pattern Recognition; 1.1 Statistical Pattern Recognition; 1.1.1 Introduction; 1.1.2 The Basic Model; 1.2 Stages in a Pattern Recognition Problem; 1.3 Issues; 1.4 Approaches to Statistical Pattern Recognition; 1.5 Elementary Decision Theory; 1.5.1 Bayes' Decision Rule for Minimum Error; 1.5.2 Bayes' Decision Rule for Minimum Error -- Reject Option; 1.5.3 Bayes' Decision Rule for Minimum Risk; 1.5.4 Bayes' Decision Rule for Minimum Risk -- Reject Option; 1.5.5 Neyman-Pearson Decision Rule. 
505 8 |a 1.5.6 Minimax Criterion1.5.7 Discussion; 1.6 Discriminant Functions; 1.6.1 Introduction; 1.6.2 Linear Discriminant Functions; 1.6.3 Piecewise Linear Discriminant Functions; 1.6.4 Generalised Linear Discriminant Function; 1.6.5 Summary; 1.7 Multiple Regression; 1.8 Outline of Book; 1.9 Notes and References; Exercises; 2 Density Estimation -- Parametric; 2.1 Introduction; 2.2 Estimating the Parameters of the Distributions; 2.2.1 Estimative Approach; 2.2.2 Predictive Approach; 2.3 The Gaussian Classifier; 2.3.1 Specification; 2.3.2 Derivation of the Gaussian Classifier Plug-In Estimates. 
505 8 |a 2.3.3 Example Application Study2.4 Dealing with Singularities in the Gaussian Classifier; 2.4.1 Introduction; 2.4.2 Na¨ıve Bayes; 2.4.3 Projection onto a Subspace; 2.4.4 Linear Discriminant Function; 2.4.5 Regularised Discriminant Analysis; 2.4.6 Example Application Study; 2.4.7 Further Developments; 2.4.8 Summary; 2.5 Finite Mixture Models; 2.5.1 Introduction; 2.5.2 Mixture Models for Discrimination; 2.5.3 Parameter Estimation for Normal Mixture Models; 2.5.4 Normal Mixture Model Covariance Matrix Constraints; 2.5.5 How Many Components?; 2.5.6 Maximum Likelihood Estimation via EM. 
505 8 |a 2.5.7 Example Application Study2.5.8 Further Developments; 2.5.9 Summary; 2.6 Application Studies; 2.7 Summary and Discussion; 2.8 Recommendations; 2.9 Notes and References; Exercises; 3 Density Estimation -- Bayesian; 3.1 Introduction; 3.1.1 Basics; 3.1.2 Recursive Calculation; 3.1.3 Proportionality; 3.2 Analytic Solutions; 3.2.1 Conjugate Priors; 3.2.2 Estimating the Mean of a Normal Distribution with Known Variance; 3.2.3 Estimating the Mean and the Covariance Matrix of a Multivariate Normal Distribution; 3.2.4 Unknown Prior Class Probabilities; 3.2.5 Summary; 3.3 Bayesian Sampling Schemes. 
505 8 |a 3.3.1 Introduction3.3.2 Summarisation; 3.3.3 Sampling Version of the Bayesian Classifier; 3.3.4 Rejection Sampling; 3.3.5 Ratio of Uniforms; 3.3.6 Importance Sampling; 3.4 Markov Chain Monte Carlo Methods; 3.4.1 Introduction; 3.4.2 The Gibbs Sampler; 3.4.3 Metropolis-Hastings Algorithm; 3.4.4 Data Augmentation; 3.4.5 Reversible Jump Markov Chain Monte Carlo; 3.4.6 Slice Sampling; 3.4.7 MCMC Example -- Estimation of Noisy Sinusoids; 3.4.8 Summary; 3.4.9 Notes and References; 3.5 Bayesian Approaches to Discrimination; 3.5.1 Labelled Training Data; 3.5.2 Unlabelled Training Data. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Pattern perception  |x Statistical methods. 
650 0 |a Decision making  |x Mathematical models. 
650 0 |a Mathematical statistics. 
650 0 |a Mathematical models. 
650 0 |a Decision making. 
650 0 |a Statistics. 
650 2 |a Models, Theoretical 
650 2 |a Decision Making 
650 2 |a Statistics as Topic 
650 2 |a Decision Support Techniques 
650 6 |a Perception des structures  |x Méthodes statistiques. 
650 6 |a Prise de décision  |x Modèles mathématiques. 
650 6 |a Modèles mathématiques. 
650 6 |a Prise de décision. 
650 6 |a Statistiques. 
650 6 |a Statistique. 
650 7 |a mathematical models.  |2 aat 
650 7 |a decision making.  |2 aat 
650 7 |a statistics.  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Statistics  |2 fast 
650 7 |a Mathematical models  |2 fast 
650 7 |a Decision making  |2 fast 
650 7 |a Decision making  |x Mathematical models  |2 fast 
650 7 |a Mathematical statistics  |2 fast 
650 7 |a Pattern perception  |x Statistical methods  |2 fast 
655 7 |a dissertations.  |2 aat 
655 7 |a Academic theses  |2 fast 
655 7 |a Academic theses.  |2 lcgft 
655 7 |a Thèses et écrits académiques.  |2 rvmgf 
700 1 |a Copsey, Keith D. 
758 |i has work:  |a Statistical pattern recognition (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGbtYMWPQ3dMDfTPYrvd8K  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Webb, A.R. (Andrew R.).  |t Statistical pattern recognition.  |b 3rd ed.  |d Hoboken : Wiley, 2011  |w (DLC) 2011024957 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=819173  |z Texto completo 
938 |a 123Library  |b 123L  |n 52090 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL819173 
938 |a ebrary  |b EBRY  |n ebr10500952 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00067243 
938 |a YBP Library Services  |b YANK  |n 7188105 
938 |a YBP Library Services  |b YANK  |n 7461474 
994 |a 92  |b IZTAP