Cargando…

Set Theory, Arithmetic, and Foundations of Mathematics : Theorems, Philosophies.

A collection of remarkable papers from various areas of mathematical logic, written by outstanding members of the field.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kennedy, Juliette
Otros Autores: Kossak, Roman
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2011.
Colección:Lecture Notes in Logic, 36.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn763157933
003 OCoLC
005 20240329122006.0
006 m o d
007 cr unu||||||||
008 120907s2011 enk ob 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d AUD  |d OCLCO  |d DEBSZ  |d OCLCQ  |d OCLCF  |d N$T  |d YDXCP  |d CAMBR  |d OCLCQ  |d S3O  |d OCLCQ  |d NJR  |d OCLCQ  |d UAB  |d OCLCQ  |d STF  |d CUY  |d MERUC  |d ZCU  |d ICG  |d K6U  |d VT2  |d U3W  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d OCLCQ  |d M8D  |d UX1  |d CEF  |d OCLCQ  |d A6Q  |d G3B  |d OCLCQ  |d AJS  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
015 |a GBB1A0451  |2 bnb 
016 7 |a 015875537  |2 Uk 
019 |a 768771224  |a 816869393  |a 817922118  |a 1055403028  |a 1066451521  |a 1081229957 
020 |a 9781139137911 
020 |a 1139137913 
020 |a 1283316757 
020 |a 9781283316750 
020 |a 9781139145244  |q (electronic bk.) 
020 |a 113914524X  |q (electronic bk.) 
020 |a 9780511910616  |q (electronic bk.) 
020 |a 0511910614  |q (electronic bk.) 
020 |a 9786613316752 
020 |a 661331675X 
020 |z 9781107008045 
020 |z 1107008042 
029 1 |a AU@  |b 000048845158 
029 1 |a DEBSZ  |b 379324237 
035 |a (OCoLC)763157933  |z (OCoLC)768771224  |z (OCoLC)816869393  |z (OCoLC)817922118  |z (OCoLC)1055403028  |z (OCoLC)1066451521  |z (OCoLC)1081229957 
037 |a 331675  |b MIL 
050 4 |a QA248 .S4125 2012 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510 
084 |a MAT018000  |2 bisacsh 
049 |a UAMI 
100 1 |a Kennedy, Juliette. 
245 1 0 |a Set Theory, Arithmetic, and Foundations of Mathematics :  |b Theorems, Philosophies. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (243 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Logic, 36 ;  |v v. 36 
505 0 |a Cover; Title; Copyright; Dedication; Contents; Introduction; Historical remarks on Suslin's problem; 1. Suslin's problem.; 2. Consistency of ƠSH.; 3. Consistency of SH.; 4. Envoi.; REFERENCES; The continuum hypothesis, the generic-multiverse of sets, and the O conjecture; 1. A tale of two problems; 2. The generic-multiverse of sets.; 3. O-log; 4. The O conjecture.; 5. The complexity of O-logic.; 6. The weak multiverse laws and H(c+).; 7. Conclusions.; 8. Appendix.; REFERENCES;?-models of finite set theory; 1. Introduction.; 2. Preliminaries.; 3. Building?-models. 
505 8 |a 4. Models with special properties. 5. ZFfin and PA are not bi-interpretable.; 6. Concluding remarks and open questions.; REFERENCES; Tennenbaum's theorem for models of arithmetic; 1. Some historical background.; 2. Tennenbaum's theorem.; 3. Diophantine problems.; REFERENCES; Hierarchies of subsystems of weak arithmetic; 1. Introduction.; 2. Preliminaries.; 3. The main results.; 3.1. Proof of Theorem A; 3.2. Proof of Theorem B.; 3.3. Proofs of Theorems C and D.; REFERENCES; Diophantine correct open induction; Introduction.; Background. 
505 8 |a Wilkie's theorems and the models of Berarducci and Otero. 1. Axioms for DOI.; 2. Diophantine correct rings of Puiseux polynomials; 3. Generalized polynomials.; Special sequences of polynomials.; Theorems on generalized polynomials.; 4. A Class of Diophantine correct ordered rings.; REFERENCES; Tennenbaum's theorem and recursive reducts; 0. Conventions.; 1. Rich theories.; 2. Thin theories.; 3. Examples.; 4. Some 1-thin theories.; 5. More about LO.; REFERENCES; History of constructivism in the 20th century; 1. Introduction.; 2. Finitism.; 2.1. Finitist mathematics.; 2.2. Actualism. 
505 8 |a 3. Predicativism and semi-intuitionism. 3.1. Poincaré.; 3.2. The semi-intuitionists.; 3.3. Borel and the continuum.; 3.4. Weyl.; 4. Brouwerian intuitionism.; 4.1. Early period.; 4.2. Weak counterexamples and the creative subject.; 4.3. Brouwer's programme.; 5. Intuitionistic logic and arithmetic.; 5.1. L.E.J. Brouwer and intuitionistic logic.; 5.2. The Brouwer-Heyting-Kolmogorov interpretation.; 5.3. Formal intuitionistic logic and arithmetic through 1940.; 5.4. Metamathematics of intuitionistic logic and arithmetic after 1940.; 5.5. Formulas-as-types. 
505 8 |a 6. Intuitionistic analysis and stronger theories. 6.1. Choice sequences in Brouwer's writings.; 6.2. Axiomatization of intuitionistic analysis.; 6.3. The model theory of intuitionistic analysis.; 7. Constructive recursive mathematics.; 7.1. Classical recursive mathematics.; 7.2. Constructive recursive mathematics.; 8. Bishop's constructivism.; 8.1. Bishop's constructive mathematics.; 8.2. The relation of BCM to INT and CRM.; 9. Concluding remarks.; REFERENCES; A very short history of ultrafinitism; 1. Introduction:; 2. Short history and prehistory of ultrafinitism.; 2.1. Murios. 
500 |a 2.2. Apeiron. 
520 |a A collection of remarkable papers from various areas of mathematical logic, written by outstanding members of the field. 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Set theory. 
650 0 |a Logic, Symbolic and mathematical. 
650 0 |a Mathematics  |x Philosophy. 
650 6 |a Théorie des ensembles. 
650 6 |a Logique symbolique et mathématique. 
650 6 |a Mathématiques  |x Philosophie. 
650 7 |a MATHEMATICS  |x Logic.  |2 bisacsh 
650 7 |a Logic, Symbolic and mathematical  |2 fast 
650 7 |a Mathematics  |x Philosophy  |2 fast 
650 7 |a Set theory  |2 fast 
700 1 |a Kossak, Roman. 
776 0 8 |i Print version:  |a Kennedy, Juliette.  |t Set Theory, Arithmetic, and Foundations of Mathematics : Theorems, Philosophies.  |d Cambridge : Cambridge University Press, ©2011  |z 9781107008045 
830 0 |a Lecture Notes in Logic, 36. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=803003  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- Title -- Copyright -- Dedication -- Contents -- Introduction -- Historical remarks on Suslin's problem -- 1. Suslin's problem. -- 2. Consistency of ¬SH. -- 3. Consistency of SH. -- 4. Envoi. -- REFERENCES -- The continuum hypothesis, the generic-multiverse of sets, and the Ω conjecture -- 1. A tale of two problems -- 2. The generic-multiverse of sets. -- 3. Ω-log -- 4. The Ω conjecture. -- 5. The complexity of Ω-logic. -- 6. The weak multiverse laws and H(c+). -- 7. Conclusions. -- 8. Appendix. -- REFERENCES -- ω-models of finite set theory -- 1. Introduction. -- 2. Preliminaries. -- 3. Building ω-models. -- 4. Models with special properties. -- 5. ZFfin and PA are not bi-interpretable. -- 6. Concluding remarks and open questions. -- REFERENCES -- Tennenbaum's theorem for models of arithmetic -- 1. Some historical background. -- 2. Tennenbaum's theorem. -- 3. Diophantine problems. -- REFERENCES -- Hierarchies of subsystems of weak arithmetic -- 1. Introduction. -- 2. Preliminaries. -- 3. The main results. -- 3.1. Proof of Theorem A -- 3.2. Proof of Theorem B. -- 3.3. Proofs of Theorems C and D. -- REFERENCES -- Diophantine correct open induction -- Introduction. -- Background. -- Wilkie's theorems and the models of Berarducci and Otero. -- 1. Axioms for DOI. -- 2. Diophantine correct rings of Puiseux polynomials -- 3. Generalized polynomials. -- Special sequences of polynomials. -- Theorems on generalized polynomials. -- 4. A Class of Diophantine correct ordered rings. -- REFERENCES -- Tennenbaum's theorem and recursive reducts -- 0. Conventions. -- 1. Rich theories. -- 2. Thin theories. -- 3. Examples. -- 4. Some 1-thin theories. -- 5. More about LO. -- REFERENCES -- History of constructivism in the 20th century -- 1. Introduction. -- 2. Finitism. -- 2.1. Finitist mathematics. -- 2.2. Actualism. 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13437968 
938 |a EBL - Ebook Library  |b EBLB  |n EBL803003 
938 |a EBSCOhost  |b EBSC  |n 400599 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 331675 
938 |a YBP Library Services  |b YANK  |n 7167160 
994 |a 92  |b IZTAP