|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn763157933 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
120907s2011 enk ob 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d IDEBK
|d AUD
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCF
|d N$T
|d YDXCP
|d CAMBR
|d OCLCQ
|d S3O
|d OCLCQ
|d NJR
|d OCLCQ
|d UAB
|d OCLCQ
|d STF
|d CUY
|d MERUC
|d ZCU
|d ICG
|d K6U
|d VT2
|d U3W
|d OCLCQ
|d WYU
|d TKN
|d DKC
|d AGLDB
|d SNK
|d BTN
|d MHW
|d INTCL
|d AUW
|d OCLCQ
|d M8D
|d UX1
|d CEF
|d OCLCQ
|d A6Q
|d G3B
|d OCLCQ
|d AJS
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBB1A0451
|2 bnb
|
016 |
7 |
|
|a 015875537
|2 Uk
|
019 |
|
|
|a 768771224
|a 816869393
|a 817922118
|a 1055403028
|a 1066451521
|a 1081229957
|
020 |
|
|
|a 9781139137911
|
020 |
|
|
|a 1139137913
|
020 |
|
|
|a 1283316757
|
020 |
|
|
|a 9781283316750
|
020 |
|
|
|a 9781139145244
|q (electronic bk.)
|
020 |
|
|
|a 113914524X
|q (electronic bk.)
|
020 |
|
|
|a 9780511910616
|q (electronic bk.)
|
020 |
|
|
|a 0511910614
|q (electronic bk.)
|
020 |
|
|
|a 9786613316752
|
020 |
|
|
|a 661331675X
|
020 |
|
|
|z 9781107008045
|
020 |
|
|
|z 1107008042
|
029 |
1 |
|
|a AU@
|b 000048845158
|
029 |
1 |
|
|a DEBSZ
|b 379324237
|
035 |
|
|
|a (OCoLC)763157933
|z (OCoLC)768771224
|z (OCoLC)816869393
|z (OCoLC)817922118
|z (OCoLC)1055403028
|z (OCoLC)1066451521
|z (OCoLC)1081229957
|
037 |
|
|
|a 331675
|b MIL
|
050 |
|
4 |
|a QA248 .S4125 2012
|
072 |
|
7 |
|a PBC
|2 bicssc
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510
|
084 |
|
|
|a MAT018000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kennedy, Juliette.
|
245 |
1 |
0 |
|a Set Theory, Arithmetic, and Foundations of Mathematics :
|b Theorems, Philosophies.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2011.
|
300 |
|
|
|a 1 online resource (243 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Lecture Notes in Logic, 36 ;
|v v. 36
|
505 |
0 |
|
|a Cover; Title; Copyright; Dedication; Contents; Introduction; Historical remarks on Suslin's problem; 1. Suslin's problem.; 2. Consistency of ƠSH.; 3. Consistency of SH.; 4. Envoi.; REFERENCES; The continuum hypothesis, the generic-multiverse of sets, and the O conjecture; 1. A tale of two problems; 2. The generic-multiverse of sets.; 3. O-log; 4. The O conjecture.; 5. The complexity of O-logic.; 6. The weak multiverse laws and H(c+).; 7. Conclusions.; 8. Appendix.; REFERENCES;?-models of finite set theory; 1. Introduction.; 2. Preliminaries.; 3. Building?-models.
|
505 |
8 |
|
|a 4. Models with special properties. 5. ZFfin and PA are not bi-interpretable.; 6. Concluding remarks and open questions.; REFERENCES; Tennenbaum's theorem for models of arithmetic; 1. Some historical background.; 2. Tennenbaum's theorem.; 3. Diophantine problems.; REFERENCES; Hierarchies of subsystems of weak arithmetic; 1. Introduction.; 2. Preliminaries.; 3. The main results.; 3.1. Proof of Theorem A; 3.2. Proof of Theorem B.; 3.3. Proofs of Theorems C and D.; REFERENCES; Diophantine correct open induction; Introduction.; Background.
|
505 |
8 |
|
|a Wilkie's theorems and the models of Berarducci and Otero. 1. Axioms for DOI.; 2. Diophantine correct rings of Puiseux polynomials; 3. Generalized polynomials.; Special sequences of polynomials.; Theorems on generalized polynomials.; 4. A Class of Diophantine correct ordered rings.; REFERENCES; Tennenbaum's theorem and recursive reducts; 0. Conventions.; 1. Rich theories.; 2. Thin theories.; 3. Examples.; 4. Some 1-thin theories.; 5. More about LO.; REFERENCES; History of constructivism in the 20th century; 1. Introduction.; 2. Finitism.; 2.1. Finitist mathematics.; 2.2. Actualism.
|
505 |
8 |
|
|a 3. Predicativism and semi-intuitionism. 3.1. Poincaré.; 3.2. The semi-intuitionists.; 3.3. Borel and the continuum.; 3.4. Weyl.; 4. Brouwerian intuitionism.; 4.1. Early period.; 4.2. Weak counterexamples and the creative subject.; 4.3. Brouwer's programme.; 5. Intuitionistic logic and arithmetic.; 5.1. L.E.J. Brouwer and intuitionistic logic.; 5.2. The Brouwer-Heyting-Kolmogorov interpretation.; 5.3. Formal intuitionistic logic and arithmetic through 1940.; 5.4. Metamathematics of intuitionistic logic and arithmetic after 1940.; 5.5. Formulas-as-types.
|
505 |
8 |
|
|a 6. Intuitionistic analysis and stronger theories. 6.1. Choice sequences in Brouwer's writings.; 6.2. Axiomatization of intuitionistic analysis.; 6.3. The model theory of intuitionistic analysis.; 7. Constructive recursive mathematics.; 7.1. Classical recursive mathematics.; 7.2. Constructive recursive mathematics.; 8. Bishop's constructivism.; 8.1. Bishop's constructive mathematics.; 8.2. The relation of BCM to INT and CRM.; 9. Concluding remarks.; REFERENCES; A very short history of ultrafinitism; 1. Introduction:; 2. Short history and prehistory of ultrafinitism.; 2.1. Murios.
|
500 |
|
|
|a 2.2. Apeiron.
|
520 |
|
|
|a A collection of remarkable papers from various areas of mathematical logic, written by outstanding members of the field.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Set theory.
|
650 |
|
0 |
|a Logic, Symbolic and mathematical.
|
650 |
|
0 |
|a Mathematics
|x Philosophy.
|
650 |
|
6 |
|a Théorie des ensembles.
|
650 |
|
6 |
|a Logique symbolique et mathématique.
|
650 |
|
6 |
|a Mathématiques
|x Philosophie.
|
650 |
|
7 |
|a MATHEMATICS
|x Logic.
|2 bisacsh
|
650 |
|
7 |
|a Logic, Symbolic and mathematical
|2 fast
|
650 |
|
7 |
|a Mathematics
|x Philosophy
|2 fast
|
650 |
|
7 |
|a Set theory
|2 fast
|
700 |
1 |
|
|a Kossak, Roman.
|
776 |
0 |
8 |
|i Print version:
|a Kennedy, Juliette.
|t Set Theory, Arithmetic, and Foundations of Mathematics : Theorems, Philosophies.
|d Cambridge : Cambridge University Press, ©2011
|z 9781107008045
|
830 |
|
0 |
|a Lecture Notes in Logic, 36.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=803003
|z Texto completo
|
880 |
0 |
|
|6 505-00/(S
|a Cover -- Title -- Copyright -- Dedication -- Contents -- Introduction -- Historical remarks on Suslin's problem -- 1. Suslin's problem. -- 2. Consistency of ¬SH. -- 3. Consistency of SH. -- 4. Envoi. -- REFERENCES -- The continuum hypothesis, the generic-multiverse of sets, and the Ω conjecture -- 1. A tale of two problems -- 2. The generic-multiverse of sets. -- 3. Ω-log -- 4. The Ω conjecture. -- 5. The complexity of Ω-logic. -- 6. The weak multiverse laws and H(c+). -- 7. Conclusions. -- 8. Appendix. -- REFERENCES -- ω-models of finite set theory -- 1. Introduction. -- 2. Preliminaries. -- 3. Building ω-models. -- 4. Models with special properties. -- 5. ZFfin and PA are not bi-interpretable. -- 6. Concluding remarks and open questions. -- REFERENCES -- Tennenbaum's theorem for models of arithmetic -- 1. Some historical background. -- 2. Tennenbaum's theorem. -- 3. Diophantine problems. -- REFERENCES -- Hierarchies of subsystems of weak arithmetic -- 1. Introduction. -- 2. Preliminaries. -- 3. The main results. -- 3.1. Proof of Theorem A -- 3.2. Proof of Theorem B. -- 3.3. Proofs of Theorems C and D. -- REFERENCES -- Diophantine correct open induction -- Introduction. -- Background. -- Wilkie's theorems and the models of Berarducci and Otero. -- 1. Axioms for DOI. -- 2. Diophantine correct rings of Puiseux polynomials -- 3. Generalized polynomials. -- Special sequences of polynomials. -- Theorems on generalized polynomials. -- 4. A Class of Diophantine correct ordered rings. -- REFERENCES -- Tennenbaum's theorem and recursive reducts -- 0. Conventions. -- 1. Rich theories. -- 2. Thin theories. -- 3. Examples. -- 4. Some 1-thin theories. -- 5. More about LO. -- REFERENCES -- History of constructivism in the 20th century -- 1. Introduction. -- 2. Finitism. -- 2.1. Finitist mathematics. -- 2.2. Actualism.
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13437968
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL803003
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 400599
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 331675
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7167160
|
994 |
|
|
|a 92
|b IZTAP
|